

THE CO-EVOLUTION OF

COOPERATIVE BEHAVIOUR

By Matthew Kelcey

Supervised by Dr. Peter Vamplew

A thesis submitted in partial fulfilment

of the requirements for a degree of

Bachelor of Computing with Honours

UNIVERSITY OF TASMANIA

1997

Co-evolution of cooperative behaviour

 2

Abstract

Much work has been done on applying evolutionary techniques to a number of

varying applications and in particular the training of neural networks. Most

evolutionary systems though are aimed at solving tasks requiring only a single entity.

This project applies co-evolutionary techniques to construct teams for multiple entity

problems with a focus on the communication aspects required between team

members.

Co-evolution of cooperative behaviour

 3

Acknowledgments

I would like to thank my supervisor Dr. Peter Vamplew for his expert knowledge of

neural networks and genetic techniques in general.

Thanks also to Id Software for honours stress relief entertainment software and

Microsoft for the perfect lesson in how to write user friendly and intuitive software. :)

Co-evolution of cooperative behaviour

 4

Table of Contents

Abstract...2

Acknowledgments...3

Table of Contents ..4

Table of Figures ..6

1 Introduction ..7

1.1 Objectives... 7
1.2 Method... 7
1.3 Summary literature review .. 8

2 Relevant literature...9

2.1 Evolutionary Techniques... 9
2.1.1 General Concepts. ...9
2.1.2 Selection Methods...11
2.1.3 The Genetic Operators..12
2.1.4 Premature Convergence..14
2.1.5 Specific Methods...14

2.2 Simple Neural Network Design ..16
2.3 Evolving General Neural Networks ..18

2.3.1 Overall Issues ..18
2.3.2 Encoding..19
2.3.3 Weight Optimisation...21
2.3.4 Topology Optimisation...21
2.3.5 Control Parameter Optimisation ..21
2.3.6 Fitness Evaluation...22
2.3.7 Genetic Operators ...22

2.4 Evolving Neural Network Controllers...23
2.4.1 General Overview ...23
2.4.2 Fitness evaluation..23
2.4.3 Different Approaches..24
2.4.4 Problems with Noise...25

2.5 Co-evolutionary Approaches to Control Algorithms..26
2.5.1 The Homogeneous and Heterogeneous approaches ...26
2.5.2 Communication Systems and Coevolution examples...27

3 Design and methodology...29

3.1 Network encoding..29
3.1.1 General comments. ...29
3.1.2 Encoding scheme. ...29

3.2 Fitness Evaluation..32
3.2.1 Simulation methods ..32
3.2.2 Fitness rescaling..33

3.3 Selection..34
3.3.1 Naive roulette selection algorithm...35
3.3.2 Improved guessing roulette selection algorithm ...35
3.3.3 A comparison ..36
3.3.4 Elitism and Pair-wise elitism..36

3.4 Selective genetic operators ...37
3.4.1 General comments ..37
3.4.2 Weighted values for crossover position selection...37
3.4.3 Weighted values for mutation position selection..39
3.4.4 Inversion positions..39

3.5 Population Management...39
3.5.1 The concept of sub-populations and migration...39
3.5.2 Migration implementation..40

Co-evolution of cooperative behaviour

 5

3.5.3 Introducing completely random members...41
3.6 Incorporating Back Propagation ...41

3.6.1 How it can be useful ...41
3.6.2 Why back propagation was avoided ..41
3.6.3 Benefits of not using back propagation ...42

4 Results without communication...43

4.1 Data prediction ..43
4.2 Straight line movement ..45
4.3 Path navigation ..47

4.3.1 Navigating a simple path ..47
4.3.2 Navigating a more complex path ...50

4.4 Vision..52
4.4.1 Vision Implementation details ...52
4.4.2 Turning to the red pole ...54
4.4.3 Moving to the red pole..55

5 Results with communication..57

5.1 Hearing facilities..57
5.2 Migration testing..57
5.3 Major test case model description...61
5.4 The homogenous approach...61

5.4.1 Homogeneous evolution results ...63
5.5 The heterogenous approach ..64

5.5.1 Population management ...64
5.5.2 Team selection ..65
5.5.3 Heterogenous evolution results ..65

6 Conclusions and further work..68

The lighter side of a thesis ...70

Bibliography ...71

Glossary ..75

Appendix A: Program Code...76

Main program..76
World header file ...78
World class definition ..79
Population header file ..81
Population class definition..83
Virtual DNA header file ...91
Virtual DNA class definition ..93
Position header and class definitions...97
Entity header file..98
Entity class definition...100
Colour header and class definitions...105
Neural Network header file ..106
Neural Network class definition..107

Co-evolution of cooperative behaviour

 6

Table of Figures

1 Figure 2.1-1: One point crossover ... 12

2 Figure 2.1-2: Two point crossover... 13

3 Figure 2.2-1: One level perceptron.. 17

4 Figure 2.2-2: Single layer feed forward network .. 17

5 Figure 2.3-1: Connection pattern encoding.. 20

6 Figure 3.1-1: An example of encoding for a 2x3x2 network. ... 31

7 Figure 3.2-1: The effect of different scaling values on similar values.. 34

8 Figure 3.2-2: The effect of different scaling values with distinct peaks...................................... 34

9 Figure 3.3-1: A comparison of the times needed for different selection techniques.................... 36

10 Figure 3.4-1: Possible choices of the location of a crossover point... 38

11 Figure 3.5-1: Migrating with and without a single subsection .. 41

12 Figure 4.1-1: Evolving data series prediction, MSE fitness 1.. 43

13 Figure 4.1-2: Evolving data series prediction, MSE fitness 2.. 44

14 Figure 4.1-3: Evolving data series prediction, MSE x #hidden fitness....................................... 44

15 Figure 4.2-1: Evolution of a simple straight-line walker... 45

16 Figure 4.2-2: Evolution of a simple straight-line walker rewarding fewer hidden nodes............ 46

17 Figure 4.3-1: A good and bad attempt at navigating a simple path ... 47

18 Figure 4.3-2: Grey scaling the path for a more continuos fitness function................................. 48

19 Figure 4.3-3: The evolution of a simple path follower .. 48

20 Figure 4.3-4: Path followed by the elite member evolved ... 49

21 Figure 4.3-5: The relationship between epoch number and simulation length 49

22 Figure 4.3-6: Evolution of a path follower with annealed simulation time 50

23 Figure 4.3-7: Evolution of a path follower with fixed simulation time....................................... 50

24 Figure 4.3-8: A more complex path.. 51

25 Figure 4.3-9: Comparisons of different elitism techniques with the complex path 51

26 Figure 4.3-10: Evolution of a path follower using pairwise elitism... 52

27 Figure 4.3-11: Evolution of a path follower using normal elitism ... 52

28 Figure 4.4-1: Vision interpretation example... 53

29 Figure 4.4-2: Evolution of an entity using vision to turn towards a target object....................... 55

30 Figure 4.4-3: Evolution of an entity using vision to walk towards a target object...................... 56

31 Figure 5.2-1: Evolving three sub-populations without migration .. 59

32 Figure 5.2-2: Evolving three sub-populations with migration... 59

33 Figure 5.2-3: Evolving all three sub-populations as one single population 60

34 Figure 5.4-1: The movement decision of a follower .. 64

35 Figure 5.5-1: Communication output of the leader network.. 66

Co-evolution of cooperative behaviour

 7

1 Introduction

1.1 Objectives

Evolutionary techniques in all their forms, such as genetic algorithms, genetic

programming and evolution strategies, have been shown to give good results with a

wide range of varying problems. In particular they have been able to evolve

behaviours in simulated and real-time based controller systems, generally in the field

of robotics. Most research studies have focussed on a single controller for a single

entity performing the required task. Less work has been done on team based problems

where a number of distinct entities are used to construct each possible solution. Any

communication in these types of systems has been predefined and static.

The objective of this project is to incorporate the communication aspects of team

based problems into the evolutionary system so that it can be evolved as an aspect of

the behaviour of an individual. This has the advantage of allowing complex problem-

specific communication systems to be evolved unique for each task. Once such a

system has been developed it can be compared with human defined communication

systems to decide whether evolving communication in this way can be useful.

All evolutionary systems also have the advantage that they can be coded somewhat

independently of the problem being solved. As such it is an aim of this project to

develop a system that requires the minimum knowledge of how the communication

will act, only needing a definition of what behaviours to reward. In this way the

desired behaviour of a problem can be abstracted away from the actual details of the

underlying communication that will be involved.

1.2 Method

This project involves five distinct stages

1. The study of literature dealing with previous research in the areas of genetic

algorithms, neural networks and the combination of the two.

Co-evolution of cooperative behaviour

 8

2. The design and implementation of a simple generic evolutionary system

incorporating a number of different implementation aspects and several new

procedures1.

3. The design and implementation of a simple feed forward neural network

class for the simulation of possible controller solutions.

4. The refinement of the evolutionary framework to perform specifically on

the neural network architectures defined in stage 3.

5. The testing of the system on increasing difficult tasks with conclusions on

whether such an approach can give valid solutions within time and

processing effort feasibility constraints.

1.3 Summary literature review

Evolutionary techniques are so called because of the conceptual similarities that exist

between them and the general principles of natural selection and genetics. Such

techniques work by maintaining a population of individuals, each of which is an

encoded instance of a possible solution to the problem being solved. Techniques are

defined for the recombination of these individuals that have been chosen by selection

methods.

Co-evolutionary techniques are an extension to include maintaining a number of

populations at once. One reason this is done is to provide solutions to problems that

require a number of different parts, such as the co-evolutionary paradigm.

When applying such techniques to specific problems such as neural networks2 a

number of issues must be addressed. The resolution of these issues often involves the

modification and specialisation of the evolutionary framework to work only on that

type of problem.

1 Including pairwise elitism, selective genetic operators, sub-population team based management and

guessing-based selection
2 And in particular neural networks as a means of defining some form of controller.

Co-evolution of cooperative behaviour

 9

2 Relevant literature

2.1 Evolutionary Techniques

2.1.1 General Concepts.

Evolutionary algorithms use principles described in natural selection and genetics as

the basis of an adaptive searching technique. Luger and Stubblefield (1993 :529)

describe the genetic algorithm as an “implementation of a powerful form of hill

climbing that maintains multiple solutions, eliminates unpromising solutions and

improves good solutions.” Since they are a parallel search method they are proficient

at quickly finding near optimal solutions for domains whose state space consist of

many local minima. Though the execution of evolutionary techniques can be slow

Wasserman (1993 :74) states “In the long run, this is probably not a valid objection.

These algorithms, like neural networks, are parallel in nature; their execution rate

increases almost linearly with the number of processors.” Schultz (1994 :3) also

points out that “…because of the nature of the genetic algorithm, the initial

knowledge does not have to be very good; it only needs to make the system have an

occasional success at performing the task.”

If an approximate solution found by the system is not accurate enough quite often

more traditional methods will converge on a final solution faster. In this way hybrid

combinations of evolutionary techniques and other search methods may produce more

efficient results.

Once a problem is clearly defined an encoding for each possible solution needs to be

chosen for the evolutionary technique to work on. This is usually a vector termed the

chromosome. A way of converting this chromosome (the individual’s genotype) into a

potential solution (the individual’s phenotype) needs to be defined, unique for the

encoding and the problem. A fitness function is also needed that assigns a real value

to each solution based on its relative ability to complete the objective. The allocation

of a fitness function is a non-trivial task3 and its definition will have a great outcome

on the performance of the overall algorithm. An evolutionary technique works on a

3 For non-trivial problem domains.

Co-evolution of cooperative behaviour

 10

population of initially random possible solutions4 and at each time step defines a new

generation.

The three genetic operators are selection, recombination and mutation. Using these

methods individuals of the population are chosen proportional to their relative fitness

and recombined to create a new population whose overall average fitness is greater

than the last generation. There are a number of issues though which must be

addressed for each unique problem. These include the following.

• Representation: evolutionary algorithms work with “genetic”

representations of trial solutions, usually in form of a string of real

or integer numbers. The user has to provide a suitable

representation and a function that maps genetic representations into

phenotypic trial solutions

• Performance: a function has to be provided that associates a

performance value with each individual. The performance should

reflect how good or how useful the individual is to solve the

considered problem.

• Creation of offspring: the user has to specify operators (eg.

crossover or mutation) that allow the creation of new individuals

given one or two parent individuals. Very often these operators

need repair functions to ensure that the offspring is a valid trial

solution, or they include local hill climbing to speed up the local

fine-tuning.

(Branke, 1995 :2)

Functions such as crossover and inversion use information already in the population

as a means of generating better solutions. Mutation techniques introduce new

information about the search space into the system and ensure that the system both is

able to reach every location in the search space and will not always become stuck in

local minima. Since evolutionary algorithms have been shown to be poor local fine

tuners (Yao, 1996) (Branke 1995) hybrid approach’s using local gradient search based

methods can in certain conditions outperform either used alone. Usually the method is

4 Some pre-processing can be done on the initial solutions to aid the algorithm’s performance.

Co-evolution of cooperative behaviour

 11

to apply the genetic technique until there is some manner of convergence and then

switch to a local hill climber (such as back propagation)

Procedures for implementing these methods in terms of a genetic algorithm were first

introduced by John Holland (Holland, 1962) and A. Fraser (Fraser, 1962) working

independently with few differences. The main difference between their early work

was “...Holland suggested reproducing each parent in proportion to its relative

fitness.” (Fogel, 1996 :90)

2.1.2 Selection Methods

It is important to make fitness evaluation a function that is as continuous as possible

so that the genetic operators can correctly discriminate between the different levels of

fitness in the population, even so a non-continuous function can provide valid results.

After fitness evaluation the raw fitness values must be converted to some scaled

fitness values ready for the selection process. For example if minimising an objective

function then small-raw functional values should be mapped onto high-scaled fitness

values for selection.

A technique such as roulette selection requires that all fitness values are positive and

adding any constant to remove negative values will scale the values unevenly, making

the selection act as a random function.

A number of approaches to converting the fitness from raw values to scaled values

exist and can be used alone or in combination.

Masters (1993) gives the example of the function to map fitness values from low-raw

to high-scaled values, F(v) = eKv for some negative constant K. He states for values of

v ∋ [0..1] from experimentation using K = -20 is effective.

Goldberg (1989) scaled all fitness values relative to the mean fitness of the entire

population to make the maximum fitness a predefined constant multiple, k, of the

mean. By experimentation he claims that rescaling with k between 2 and 1.5 gave

robust results.

Another problem associated with roulette selection is that the best chromosome in any

population can be lost in a generation through chance.

One way to ensure asymptotic convergence towards a global maximum is to apply a

heuristic such as elitism selection (Grefenstette, 1986) where the fittest individual in

Co-evolution of cooperative behaviour

 12

each generation is copied to the next generation unchanged. The actual rate of

convergence though varies for each application.

Masters (1993) used a technique based on roulette selection that guarantees that the

fittest individuals in each generation are selected for reproduction. He produced an

array, the size of the population, of individuals to choose from and selection was

made from this array. Each individual has an expected frequency calculated and

individuals with a frequency of n.something are included n times in the array. Once

all individuals with an expected frequency greater than one have been included the

remainder of the array is filled with individuals that have an expected frequency of

less than one.

2.1.3 The Genetic Operators

2.1.3.1 Crossover

Crossover is the main genetic operator in most systems. It involves the recombination

of two (or possibly more) parent chromosomes into one or two children

chromosomes.

One point crossover works with two parents to produce two children. The effect of

one point crossover is shown in figure 2.1-1. When using one point crossover genes

nearer the middle are more likely to be separated than genes near the ends. One point

crossover also requires some kind of inversion5 for reordering of the chromosome to

remove this potential problem

Parents Children

One point crossover

1 Figure 2.1-1: One point crossover

Co-evolution of cooperative behaviour

 13

Two point crossover uses a similar technique with two crossover positions chosen.

Two point crossover can be thought of as treating the chromosome as cyclic. Since

the advantage inversion displays in one point crossover is no longer apparent, it is no

longer required. The effect of two point crossover is shown in figure 2.1-2

Parents Children

Two point crossover

2 Figure 2.1-2: Two point crossover

Uniform crossover is a gene-wise operator producing one child that assigns the child’s

nth gene from the first or second parent based on some measure of their relative

fitness. Syswerda (1989) had greater success using a uniform crossover operator as

opposed to using one or two point crossover on a series of functional optimisation

experiments.

2.1.3.2 Mutation

Mutation must be used in extreme moderation as it is a dangerous and destructive

operator. However it is required in any genetic system since it is the basis of

introducing new genetic material into the population. Rechenberg (1965) and

Schwefel (1965) both developed similar genetic techniques using only the mutation

operator.

When using a binary alphabet for encoding, mutation requires only the flipping of a

single bit.

When using a more complex encoding scheme, for example real value encoding, a

common mutation operator is the addition of a Gaussian random number with mean

5 Inversion is genetic operator that reverses the order of the chromosome between two randomly chosen

points.

Co-evolution of cooperative behaviour

 14

zero and standard deviation proportional to the individuals relative fitness. By using

an adaptive mutation operator such as this the destructive effects on highly fit

chromosome’s is to a lesser degree then when it is applied to the more unfit

chromosomes.

Another form of mutation with real value optimisation is the replacement of a position

on the chromosome with a completely new random value.

2.1.4 Premature Convergence

Premature convergence is often apparent in evolutionary techniques due to the strong

emphasis on crossover and the selection of the fittest individuals (Kursawe). Once

convergence has occurred only the genetic operator of mutation makes changes to the

population turning the search into a random walk. This is when a hill climbing

heuristic can become useful to make use of both the strengths of a genetic technique

and a gradient search based method.

Schraudolph and Belew (1992) used an approach they name dynamic parameter

encoding as a means to avoid premature convergence. This technique uses a heuristic

to determine when convergence has occurred and dynamically resizes the available

range of each parameter to become smaller. This in effect “zooms in on solutions that

are closer to the global optimum than provided by the initial precision” (Fogel, 1996,

:95) If the global optimum is not included in the initial range of parameter values

though this technique will be unable to find it. Schraudolph and Belew found that

dynamic parameter encoding worked well when searching a quadratic bowl but

poorly when searching a multimodal function such as Shekel’s foxholes.

2.1.5 Specific Methods

There are three major forms of evolutionary techniques being genetic algorithms,

evolutionary strategies (or evolutionary algorithms) and genetic programming (or

evolutionary programming). A comparison of these techniques can also be found in

(Fogel, 1993).

2.1.5.1 Genetic Algorithms

Formally a genetic algorithm uses only a binary alphabet to coincide with schemata

theory. “Holland recognised that every evaluated string actually offers partial

information about the expected fitness of all possible schemata in which that string

Co-evolution of cooperative behaviour

 15

resides” (Fogel, 1996, :92-93, in reference to Holland, 1975, :66-74) This

information, gained with many schemata, is termed ‘implicit parallelism’.

Using a binary alphabet is powerful in the sense that the genetic operators working on

chromosomes are quite simple. Mutation for example is simply the inversion of one

position in the bit string. However the size of chromosomes for complex problems

may be in the order of thousands of bits and can be slow and produce inaccurate

values.

2.1.5.2 Evolutionary Programming

Rather than evolving specific solutions to a problem a collection of actual algorithms

associated with the problem can be encoded and recombined. L. Fogel pioneered this

general concept as a means of simulating evolution on a population of competing

algorithms to develop artificial intelligence. (Fogel, 1962). He used it to evolve finite

state machines for such tasks as predicting prime numbers (Fogel, 1966) and also with

Burgin as a means of evolving strategies for simple games. (Fogel, Burgin, 1969)

When evolutionary programming is applied to real valued optimisation problems they

behave as evolutionary strategies, independently researched and described below.

2.1.5.3 Genetic Programming

One problem with using evolutionary techniques for neural network evolution is

scaling. A fully connected network with N neurons will have N2 connections and this

produces impractical sizes for chromosomes. Genetic programming is a method of

evolving a set of growth rules rather than a direct representation of the problem and

can be thought as a solution recipe. This adds another layer of abstraction onto an

encoding with chromosomes consisting of rules on how to build the actual phenotypic

representation. Gruau (1994) developed an algorithm for compact cellular growth

based on symbolic S-expressions as a means of creating network growth rules.

Esparcia-Alcazar and Sharman (1995) found “Although this method can evolve very

elaborate structures, we have observed that it takes very long to converge to an

optimum, which is unsuitable for certain applications.” (Alcazar, Sharman, 1995 :1)

2.1.5.4 Evolutionary Strategies

Evolutionary Strategies use a value type deemed necessary in the encoding of a

chromosome. This is important in problems that use real valued parameters as a

binary alphabet can not give the precision required without a long chromosome.

Co-evolution of cooperative behaviour

 16

The evolutionary strategy approach was first explored independently by Rechenberg

(1965) and Schwefel (1965) addressing the problem of real valued continuous

function optimisation. “In this model, the components of a trial solution are viewed as

behavioural traits of an individual, not as genes along a chromosome” (Fogel, 1996

:85)

Kursawe studied evolutionary strategies in the context of multiple criteria

optimisation. To cope with the changing environment that is apparent with two or

more criteria he employed the use of dominant and recessive genes in his encoding.

His studies on co-optimising two complex functions showed exchanging the recessive

and dominant genes for each individual with a probability of around 0.3 gave robust

results. He concluded also from further testing that when only maximising one

objective function the modelling of diploid6 individuals was not worth the extra

computation.

Two main approaches are in use today denoted by (µ+λ)-evolutionary strategies and

(µ,λ)-evolutionary strategies with µ indicating the number of parents and λ indicating

the number of offspring per generation. In a (µ+λ) evolutionary strategy the µ fittest

of all the solutions move into the next generation where as in a (µ,λ)-evolutionary

strategy competition is only between the λ offspring with all parent’s being replaced.

2.2 Simple Neural Network Design

A neural network is a biologically inspired parallel-distributed processing method. It

consists of a number of nodes (or neurons) connected by links. These nodes process

the values on the links entering them by means of an activation function and distribute

the result on the links leaving it. Each link has an associated weight that scales any

signal passing along it and it is these weights that act as the network’s information

storage mechanism. Teaching the network is usually achieved by manipulating these

weight values. A number of nodes are reserved as the input and output of the network.

6 Polyploidy refers to the number of distinct copies of the chromosome kept by each individual.

Includes haploid (one copy), diploid (two copies), triploid (three copies) and tetraploid (four copies).

Co-evolution of cooperative behaviour

 17

The simplest network is called a perceptron and consists of one layer of weighted

connections. An example perceptron is shown in figure 2.2-1.

OutputsInputs

3 Figure 2.2-1: One level perceptron

A network can also consist of a number of hidden layers containing nodes not directly

acting as either input or output. An example single hidden layer network is shown in

figure 2.2-2

OutputsInputs

4 Figure 2.2-2: Single layer feed forward network

These networks are fully connected in that each node has a link to every node in the

next layer. Such networks are also called feed-forward networks since links only exist

from one layer to the next. Recursive networks can have connections from a node to

any another node, regardless of the layer and can include links from a node back onto

itself.

The activation function of each node takes the weighted inputs along all the links

entering that node and applies some function to serve as the output for that node. This

function is usually non-linear to produce a continuous response and needs to be

differential if using a back propagation based training method. A sigmoidal function

is often used since it produces a similar result to a simple threshold function but gives

Co-evolution of cooperative behaviour

 18

more accurate information when determining the error magnitudes that are needed for

the training.

Training of a network is usually based on a gradient descent search of the error

response surface called back propagation. Given the network’s response to inputs and

the actual desired result an error value can be calculated and fed backwards through

the network to adjust weight values. For a more comprehensive discussion on back

propagation algorithms see (Luger, StubbleField, 1995)

2.3 Evolving General Neural Networks

2.3.1 Overall Issues

The evolution of a neural network involves two parts, the selection of an appropriate

network topology and the optimisation of the interconnecting weights. Both of these

problems can be solved, separately or together, with a number of distinct approaches.

Issues that must be addressed with both stages of evolution include…

• How the representation of encoding scales to large networks.

• Whether reproduction operators create valid and more useful networks.

• Whether the best network can be represented by the encoding scheme.

• How invalid network designs are handled (usually left alone and

subsequently ignored by genetic process due to the poor fitness values

allocated to them)

There are two paradigms to designing a network’s genetic encoding, low-level

encoding7 and high-level encoding8. Low level encodings are a specification of each

connection and weight explicitly, and grow exponentially with the size of the required

network. High level encodings encode a means of constructing the network (referred

to as “growth rules” by Branke, 1995) and if encoded correctly are the same size

regardless of the size of network’s produced.

7 Also known as strong or direct encoding.
8 Also known as weak or indirect encoding.

Co-evolution of cooperative behaviour

 19

An example of a combination of high and low level encoding is possible for example

with space on the chromosome reserved for weight values (low level information) and

also connection information (high level information).

When choosing an encoding scheme it is important to ensure human bias doesn’t

exclude networks that may be optimal.

2.3.2 Encoding

Real value encoding is one sensible choice for a low level network encoding scheme

because it is more consistent and precise and results in faster execution (Michalewicz,

1992) (Thierens et al, 1993) (Yao, 1996).

Michalewicz (1992) also claimed that for extremely large state spaces, genetic

algorithms perform poorly though “it is only fair to say maximising implicit

parallelism will not always provide for optimum performance” (Fogel, 1996 :94)

Since weights are real values the use of binary encoding results in very large

chromosomes with low precision and can slow down the evolution process. The

simplest low level encoding for a network is concatenating all the network’s weights

into one string.

The main genetic operator crossover is more likely to separate gene information

spaced apart on the chromosome so it is sensible to place similarly functional units

close to each other. Thierens et al (1993) placed incoming and outgoing weights of a

node next to each other.

Yoon et al (1994) placed all incoming weights of each node together and all nodes of

each layer together.

Saha and Christensen (1994) used an encoding method that incorporates both weights

and weight connections by supplying for each node an extra bit per weight

representing whether that connection is present or not.

An example of an encoding used to describe the connection pattern of a possible

network is shown in figure 2.3-1 (Miller et al, 1989)

Co-evolution of cooperative behaviour

 20

Phenotype representation:
Adjacency matrix Actual network connections

 1 2 3 4

1 0 0 1 1
2 0 0 1 1
3 0 0 0 1
4 0 0 0 0

Genotype representation:
(0011001100010000)

3

4

21

5 Figure 2.3-1: Connection pattern encoding

One major problem apparent in encoding is the permutation problem, (Yao, 1996)

also referred to as the competing conventions problem, (Branke, 1995) due to the fact

that many valid possible genotypes can map into one unique phenotype. “The group

of functionally equivalent but structurally different networks can be defined by two

simple transformations.” (Branke, 1995 :14)

The first is a permutation of the genotype that moves whole node information, leaving

the phenotypic representation of the network unchanged. The second is the inversion

of all the weights signs in a node with an odd activation function, again giving

different representations of functionally equivalent nodes. (Branke, 1995).

There are also problems dealing with the consideration of the extra size of the state

space (Branke, 1995) and the reproduction of unfit children using multiples of the one

node. (Yao, 1996) With n nodes there are n! functionally equivalent nodes under the

first transformation and 2n under the second transformation.

Braun and Weisbrod (1993) attempted to avoid the permutation problem by making

long connections less probable than short connections thus preferring the structured

mapping with the shortest connection length.

Thierens et al. (1993) reordered the genetic string before applying crossover in such a

way that nodes with a similar number of negative and positive weights are in the same

general position on the chromosome.

Co-evolution of cooperative behaviour

 21

2.3.3 Weight Optimisation

For a network with a fixed topology the selection of interconnecting weights is an

optimisation problem with the goal to maximise the network’s performance (Branke,

1995).

Evolutionary algorithms can be used for problems where gradient information is

unavailable since they do not use it. This is apparent in problems for “networks with

non differentiable transfer functions” (Branke, 1995 :4), recurrent networks and when

using reinforcement learning methods (Yao, 1996). Also since they are a global

search they can overcome many of the problems associated with local minima.

However there needs to be a way of defining the performance of a network for the

allocation of relative fitness.

With problems where gradient information is easily obtainable methods such as

quickprop or cascade correlation usually outperform evolutionary approaches

(Schaffer et al, 1992)

2.3.4 Topology Optimisation

 If the topology is too small (in terms of units and connections)
the network might not be able to represent or even learn the
desired input/output mapping. On the other hand, if it is too
large, the network very often generalises poorly to inputs
previously unseen.

 (Branke, 1995 :5)

There is no restriction on the topology of a network evolved by an evolutionary

technique since they use no error signal back propagation (Branke, 1995). This can

make evolutionary techniques appropriate for non-feed forward network designs such

as recurrent networks.

2.3.5 Control Parameter Optimisation

The use of evolutionary techniques can also be applied to calculating control

parameters for gradient based learning techniques. This can either be included as extra

parameters in a hybrid approach or as its own genetic system.

Evolved parameters can include values such as learning rate, momentum values and

the initial weight range. (Belew et al, 1989) (Marshall, Harrison, 1991)

Co-evolution of cooperative behaviour

 22

Also work has been done on evolving parameters such as the activation function, bias

values, the learning strategy, weight decay terms and the number of training epochs

(Marshall, Harrison, 1991)

2.3.6 Fitness Evaluation

Fitness evaluation must take into account two factors, the performance and the size of

the network. The most common performance measure is a function of the network’s

mean square error (MSE) in relation to a test set. Since a low MSE indicates good

performance where as evolutionary techniques take low values as indicating a low

fitness there needs to be some inversion mapping applied. Usually 1/MSE, 1/1+MSE

or maxMSE-MSE (if a maximum MSE if known) are used for this mapping.

If a test set is unavailable, as is the case in such applications as robotic controllers,

(Salama, Hingston, 1995) (Grefenstette, 1994) (Schultz, Grefenstette 1994) some

measure of the network’s performance at its given task needs to be defined.

As a means of selection Fogel et al. (1990) enforced that each network was only

admitted to the next after competition with ten other individuals. The probability of a

network ‘winning’ against another was equal to the opponent’s error score divided by

the sum of both error scores.

A heuristic can also be included in the evaluation of fitness to reward each good

property of a network. Whitley et al (1990), for example, used a bias to allocate more

of the overall training time to networks with a small number of hidden nodes.

2.3.7 Genetic Operators

When genetic operators such as crossover, inversion and mutation are to be used it

has to be decided on what scale the operations act, or deciding “on what constitutes a

gene” (Branke, 1995 :5)

Thierens et al (1993) developed a possible crossover operator that exchanged hidden

node information with all incoming and outgoing weights.

In terms of crossover applied to the connection pattern of two networks Braun and

Weisbrod (1993) allocated a connection to a child when both the parent’s exhibit that

connection. If only one parent had the connection then it is passed on with a user

defined probability. The actual values of weights are also some user-defined function

of the parent’s weights.

Co-evolution of cooperative behaviour

 23

 “A good mutation operator should adhere to the principle of strong causality, ie. It

should in most cases cause small differences in quality” (Utrecht, Trint, 1994)

To follow this causality Angeleline et al (1994) made all new connections created

with associated weights set to zero and had new nodes added with no connections to

other nodes.

Branke (1995) initialised new weights with small random values as well as removing

low valued connections.

Fogel et al. (1990) used a mutation operator that added a random Gaussian number to

selected weights and decreased the deviation of the variable over time as a means of

annealing.

2.4 Evolving Neural Network Controllers

2.4.1 General Overview

Usually a controller for a robot system involves inputs coming from sensors of some

type and outputs mapping onto a number of possible actions. Evolutionary techniques

have been used successfully in a number of different problems to evolve controllers

for robot systems. Usually though these systems are simulation based only and hence

are different to real life models in many respects.

Grefenstette and Shultz make the comment that evolving a controller system “…will

usually require that the learning system be given whatever level of knowledge can be

easily provided by the designer.” (Grefenstette, Schultz, 1994 :65)

2.4.2 Fitness evaluation

The evolution of robotic controllers presents an interesting problem in terms of fitness

evaluation. Classifiers and networks used to predict time series usually use a function

of the network’s mean square error to determine fitness but since the behaviour of the

controller is being evolved there is no unique numerical value that can be used for

this. It is difficult to assign fitness for an individual since it will usually involve a

certain amount of human bias and error.

Co-evolution of cooperative behaviour

 24

2.4.3 Different Approaches

Wieland (1992) used a genetic algorithm to evolve recurrent networks for controlling

a number of unstable systems including the broom handle balancing problem (also

referred to as the inverted pendulum problem).

Lewis et al. (1992) evolved a network of fixed size and used their system to evolve

the actual weight values for connections. They applied what they describe as staged

evolution where different parts of the network are evolved separately. Their results

show an improvement in the rate of global maximum convergence.

Cliff et al. (1993) used the SAGA genetic algorithm package to evolve controllers for

a simple wheeled robot. The emphasis of their work was to design a structure that

grew the size of the network for complex tasks and shrunk it for simpler problems.

Schultz and Grefenstette (1994) used a representation language approach to evolve

simple robot behaviours. They define a behaviour as a set of ‘if..then..’ rules such

as…

IF front_sonar<30 AND bearing>10 THEN turn=20

IF front_ir<5 THEN speed=-10

They also describe a system for including the rules in a hierarchical system as a

means of higher level abstraction.

One of the major benefits with using such a representation is that “…it allows the

learning system to be easily seeded with initial knowledge.” (Schultz, 1994 :2) Their

initial population of solutions was generated as a combination of human generated

rules and a number of variants on them. It seems though that using an approach of

deriving initial individuals from human solutions may include some kind of human

bias which may in turn inhibit performance.

Grefenstette (1994) talks about the same system and makes a number of points about

using background knowledge. Constraints can be added to limit the generation of

rules that are known to be undesirable though again this is introducing a form of

human bias. If the allocation of fitness is correct than any undesirable rule sets will be

removed by the evolution process itself.

Co-evolution of cooperative behaviour

 25

Salama and Hingston (1995) used a matrix approach to store network connections in

their system for evolving a robot controller where matrix element ai, j gives the weight

from node i to node j. They evolved a simple robot controller for a 6 legged robot that

walks to a target position using the minimum number of steps. An interesting concept

in their project is the selection of mating pairs. They include a simulation of a finite

grid that the networks inhabit. The networks are allowed to ‘wander’ randomly over

the grid for a set amount of time, at the end of which they breed with the fittest

network that they encountered. They believe this grid structure introduces a locality

factor into the selection process that maintains diversity in the population.

Also included was a uniform distribution of noise applied to the position of the virtual

robot to simulate some degree of real life noise. They conclude, “By inspection, it

seems that a moderate level of noise during training is most beneficial.” (Salama,

Hingston, 1995 :582)

Maher and Poon (1995) propose an encoding method for general optimisation where

the fitness function is encoded as part of the genotype and as such is co-evolved along

with design solution. They believe this is an important part of many problems where

the environment is changing and present a number of alterations to the standard

genetic algorithm method.

Included is a design methodology for two-phase crossover, applied first to the

problem part of the chromosome and secondly to the design solution part. They state

“Optimisation is part of a design process, but it is not the whole. The design process

includes the search for the problem as well as the solution.” (Maher, Poon, 1995 :243)

2.4.4 Problems with Noise

One main concept in all controller based evolution is the handling of noisy systems.

Normally simulation models do not accurately take noise into account and produce

unrealistic results. Also the robustness of most controllers is an issue. Do the training

procedures applied provide enough generality? Schultz (1994) believes that including

more noise than is apparent in the real world environment makes evolved knowledge

in a simulation model more robust.

Co-evolution of cooperative behaviour

 26

2.5 Co-evolutionary Approaches to Control Algorithms

2.5.1 The Homogeneous and Heterogeneous approaches

There are two approaches to evolving a number of entities known as homogeneous9

and heterogeneous10 evolution.

Reynolds (1993) used a genetic programming approach to evolve “critters” that

exhibited herding behaviour when attacked by predators. His system evolved a single

homogeneous controller that moved each critter with information on its position,

direction, neighbouring critters and predator locations.

Collins and Jefferson (1991) used a genetic programming approach to evolve a neural

network controller for ants in an ant colony simulation. A homogeneous network

controlled each ant with the fitness defined as the amount of food collected in a given

time span. Inputs to the network included neighbouring information about food,

pheromone and the nest. Outputs decided the movement of each ant and the laying of

pheromone.

Haynes et al (1995) used a heterogeneous approach to a similar problem breeding

teams of genetically programmed distinct individuals in a simple predator/prey

system.

Koza (1992) developed a way of selecting heterogeneous individuals for a team at

trial time that he termed co-evolution. A population under this scheme is divided into

sub-populations with each one providing a specialised member for the team.

Whether a problem is homogeneous or heterogeneous makes a large difference in the

breeding policy of the algorithm. In the homogeneous approach each member of the

population is evolved as normal and a team is constructed by ‘cloning’ this individual.

In the heterogeneous approach there is the decision whether members should be

allowed to breed only with other team members or whether they are allowed to breed

between teams. (Luke, Spector, 1996)

An unfortunate problem associated with constructing teams in this way is the so-

called credit assignment problem. When a team of entities has had a fitness value

9 A common algorithm control different entities.
10 Distinct algorithms control different entities.

Co-evolution of cooperative behaviour

 27

evaluated for them as a whole, which individuals get more credit for the teams

success or failure? (Haynes et al. 1995)

Haynes et al. addressed this problem by considering the whole team as one individual.

There are facilities for defining sub-individuals within a main individual constructed

by Koza (1994) Automatically defined functions and Spector (1996) Automatically

defined macros.

2.5.2 Communication Systems and Coevolution examples

Luke and Spector (1996) in their research developed a simple predator/prey

environment with one ‘gazelle’ and a number of ‘lions’, the aim of the lions being to

catch the faster gazelle. They tested a number of different approaches to team

selection for the predators and also a number of predator communication systems.

Sample runs found that restricted breeding between team members outperformed11

free interbreeding for predators that had distinct control algorithms. They also

addressed the problem of deciding a means of communication between members of

each team. Their sensing experiments compared name-based sensing12 and deictic

sensing13 and found that the former outperformed the latter in all cases considered.

They also found that “…as the sensing becomes increasingly distinct (more name-

based), heterogeneous approaches work better than homogeneous approaches.” (Luke,

Spector, 1996 :2)

Naghashi et al. (1995) review a number of approaches to evolving neural controllers

but point out common problems apparent in most. The first is that when using a

homogeneous approach all entities act in the same manner when presented with the

same conditions. This means there is no unique learning mechanism in the scope of

one entities lifespan, each simulation gives only an evaluation of how the controller

performs and does not act directly towards improving it. They address this problem by

giving each entity it’s own independent learning mechanism modelled with what they

call a classifier system. The simulation used genetic programming to evolve

11 In terms of the speed of evolution.
12 Where entities are referred to explicitly (eg ‘entity number 5’)
13 Where entities are referred to implicitly (eg ‘nearest neighbour’)

Co-evolution of cooperative behaviour

 28

“if..then..” rule structures for controlling the entities and observed the evolution of

mutualism between different entities as a means of survival.

The simulation consisted of three distinct entity types A, B and C with the following

main characteristics.

1. A preyed on B and B preyed on C but there was no interaction between A and C.

2. Each of the entities had a means of sensing the proximity of others.

If an entity caught another it gained that entities strength and this was used as a

measure of the fitness of each individual. Their research found that C evolved a

behaviour to stay close to A to avoid being caught by B.

Co-evolution of cooperative behaviour

 29

3 Design and methodology

3.1 Network encoding

3.1.1 General comments.

The genetic system defined for this project evolves the interconnecting weights and

bias terms for the nodes in the single hidden layer while also performing limited

optimisation of this layer’s topology. Although this limits the behaviours of the

networks that can be defined, it gives rise to a simple encoding scheme.

As discussed previously in section 2.3.2 the classic genetic algorithm approach of

using binary encoding does not seem appropriate for neural networks so real based

encoding was used. For a neural network encoding this is sensible since any fully

connected network can be defined by a sequence of real values (representing the

connection weights and bias values).

For this encoding scheme the number of input and output nodes is fixed and to make

the DNA a fixed length a maximum number of hidden nodes is set prior to any

program execution.

3.1.2 Encoding scheme.

The encoding of a network is made up of a sequence of genes each representing a

potential node in the hidden layer. In turn each gene is made up of three sub parts, the

active position, the incoming weights and the outgoing weights.

3.1.2.1 The active position

The active position is a single real value that determines whether the hidden node

represented by the gene will be exhibited in the final network. This is a form of high

level encoding with a non-negative value meaning this node will be present in the

network and a negative value meaning this node will not be exhibited in the network.

This is a very rough model of diploid behaviour in genetics where a section of DNA

can be ‘turned off’ with the possibility that it will become useful in the future and

‘turned back on’. The changing of the active position through mutation is the systems

Co-evolution of cooperative behaviour

 30

way of performing topology optimisation. Though this value could have been

represented in the gene string as a single bit, for the simplicity of the implementation

it was assigned to a real value so that the whole chromosome consisted of only real

values.

3.1.2.2 The incoming weights

The next section of the gene represents the incoming weights. The first of the values

is the bias value for the node with the remaining values being the actual connection

weights from the input layer to the hidden layer. The bias value was included with the

incoming weights due to the implementation of how the bias values are used. This

section of the gene is a low-level encoding where the values in the gene itself map

directly onto the connection weight values.

3.1.2.3 The outgoing weights

The remaining values in each gene represent the weights of the connections from the

hidden layer to the output layer. This section, as with the incoming weights, is a low-

level encoding where the DNA values are mapped directly to the connection weight

values.

3.1.2.4 Encoding scheme details

For the general case of a network with I input nodes, a maximum of H hidden nodes

and O output nodes the chromosome for a single network is encoded in a string of

H(1+I+O) real number values (with the 1 representing the active position).

It can be argued that the positioning of these three groups is important. For instance

with the active position next to the inputs there seems to be more of a chance of the

active position and inputs being passed to a child than the active position along with

the outputs. This problem is irrelevant though with the use of a cyclic crossover

operator so that the active position, inputs and outputs are effectively all neighbours to

each other. This would not be the case with 4 or more distinct groups of information

being represented by each gene.

3.1.2.5 A small example

The encoding for an example 2x3x2 network (2 inputs, a maximum of 3 hidden nodes

and 2 outputs) is as shown in figure 3.1-1. With 2 functional inputs there are actually

Co-evolution of cooperative behaviour

 31

3 inputs to the network with the first hard-wired to the value 1. The connection

weights from this input to the hidden nodes represent the bias values thus giving a

functionally equivalent implementation of how a bias value acts in a standard

network.

 O1

 I1

 I2

1

 0.6

 -0.6

 0.5

 -0.5

 -0.4

 0.2

 0.2

 -0.4

 0.3

Exhibited Not exhibited Exhibited

0.1 0.8 0.3 –0.4 0.5 –0.4 –0.2 0.6 0.2 0.8 –0.4 0.5 0.3 0.6 0.2 –0.6 –0.5 0.2

 0.8

 O2

Active position

Bias term Incoming
weights Outgoing

weights

6 Figure 3.1-1: An example of encoding for a 2x3x2 network.

3.1.2.6 Other aspects of the encoding

If the DNA for a potential network is initialised with random values then

approximately half of the genes will have a non-negative value in the active position.

This represents a network with only half the hidden nodes active and hence exhibited.

Therefore if it desired that the network has H hidden nodes then the actual DNA

should be defined to have a maximum number of hidden nodes equal to Hx2. In this

way the average number of hidden nodes exhibited by each network initially will be

H.

The encoding scheme as it is uses a large degree of low level encoding. This method

encodes weight values accurately but does not scale well to large networks where

doubling the size of a network effectively doubles the size of the encoding.

Co-evolution of cooperative behaviour

 32

The system also only defines fully connected networks with each hidden node

connected to every input and output node. The system can effectively simulate a non-

connection by having zero-weighted values but this is not reflected in any fitness

functions applied during simulation and as such is not treated as a benefit in any

explicit way.

3.2 Fitness Evaluation

3.2.1 Simulation methods

When evolving networks the only way to get accurate fitness values is to express the

DNA in its phenotypic network form and run it through the task. This presents the

major bottleneck in the simulation where a single simulation run may take some time.

When the entire population must be simulated the program spends a large proportion

of its time in simulating to gain fitness values.

One approach to dealing with this bottleneck is annealing the simulation length. For

example if the task is expected to take n turns in the simulation model we start with

the simulation lasting n0 < n. and each epoch we increase n0 until it reaches n where

the whole simulation will be performed. This gives an obvious speed up as the less

time is spent simulating though it has some major drawbacks. Without a full

simulation being applied members have an inaccurate fitness assigned to them.

Individuals that are good at the first parts of the problem dominate the population too

much in the early stages and the system has trouble learning the final stages of the

task. Annealing was tried as an approach in the path learning example (see section

4.3.1)

Another problem with having to perform simulation is dealing with any random

factors that may be present in the initial set up of the simulation model. An example

of this is assigning random starting positions to entities. An entity tested with a ‘good’

starting position will usually get a better fitness than one with a ‘bad’ starting position

even though they may have performed equally if given the same position to start with.

The simplest and most effective approach to solving this problem is to perform

multiple simulation runs and take some form of average. This of course takes much

Co-evolution of cooperative behaviour

 33

longer but allocates fitness fairer, though it still does not guarantee a fair trial for each

individual.

3.2.2 Fitness rescaling

Recall that fitness rescaling is converting the raw fitness values obtained through

simulation to the scaled fitness values to be used in the selection process.

There is a need for rescaling to deal with two diversity problems apparent in any

genetic system.

Firstly when evolution starts there are usually a few ‘lucky’ individuals whose DNA

give them large fitness values compared to the others, even though they are not the

ideal individuals. These extreme values often mean these members swamp the

population in only a few epochs resulting in premature convergence.

The second problem is when the system is converging on an optimal solution and the

population consists of only high fitness valued individuals. In this case the system

cannot accurately select the fitter members over the others and some rescaling is

needed so that selection can properly determine the best individuals.

Best results were gained using the ‘scale maximum relative to average approach’ (see

section 2.1.2). Rescaling to make the maximum twice the average was found to give

robust results agreeing with Goldberg (1989). Since this value implicitly determines

the convergence rate of the system a lower value (towards 1.5) with a large population

maintained reasonable diversity. Values too close to 1, indeed 1 itself, treat all

members equally and hence are useless.

Figures 3.2-1,3.2-2 show examples of this scaling using a number of different values

for k. It is notable that this technique can map some fitnesses to negative values.

Since these negative values will upset the standard roulette selection the algorithm

needs to deal with these negative values. All values can have a constant added to them

so the most negative value is scaled to zero or the algorithm can simply set the

negative values to zero. The former is preferred since setting all negatives to zero

treats these members unequally.

Co-evolution of cooperative behaviour

 34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

raw k=1.5 k=2 average (k=1)

7 Figure 3.2-1: The effect of different scaling values on similar values

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

raw k=1.5 k=2 average (k=1)

8 Figure 3.2-2: The effect of different scaling values with distinct peaks

3.3 Selection

Standard roulette selection was used in combination with population elitism. This

produced a selection system that correctly selected proportional to fitness while

guaranteeing that the best solution was maintained. For a population of N members

the selection function was called at least N times. (Possibly more since in the case of

crossover another parent needs to be chosen)

Co-evolution of cooperative behaviour

 35

3.3.1 Naive roulette selection algorithm

The naive approach to implementing roulette selection requires that only each fitness

value and the sum of the fitness values is known.

An individual is selected as follows…

1. Select a random number, n, from 0 to the fitness sum

2. j = 0

3. if n ≤ fitness[j] then the jth individual is selected and we are

finished

4. else n = n-fitness[j] and j=j+1

5. go to 3.

3.3.2 Improved guessing roulette selection algorithm

A guessing approach developed requires a selection array constructed in the following

way…

 select[0] = fitness[0]

 select[j] = fitness[j] + select[j-1] 1≤j≤N

The selected individual will be member j where select[j-1] < n ≤ select[j] (except for

the boundary case of n ≤ select[0]), all that is needed is to find the correct value of j.

This is done by making a guess of what j should be and refining the guess

This time the algorithm is as follows

1. select a random number, n, from 0 to fitness total

2. if n < select[0] we choose member 0 //lower boundary condition

3. if n > select[N-1] we choose member N //upper boundary condition

4. guess j = n / average fitness value

5. if select[j-1] < n ≤ select[j] we choose member j and finish

6. if n > select[j] then j=j+1 and go to 5.

7. j = j-1 and go to 5.

This approach has the advantage of a great deal of speed up. Even though the select

array must be created it needs only be done once for each epoch where as the actual

selection will be performed N times.

Co-evolution of cooperative behaviour

 36

3.3.3 A comparison

Figure 3.3-1 shows the time taken for each selection method executed a thousand

times on a population with a thousand individuals.

0

100

200

300

400

0 50 100 150 200 250
population size

re
la

ti
ve

 t
im

e
ta

ke
n

naive guess

9 Figure 3.3-1: A comparison of the times needed for different selection techniques

It can be seen the naive approach is of order (n2) where as the guessing technique

performs better with a performance of order (n)

3.3.4 Elitism and Pair-wise elitism

Since selection is still an essentially random process it is possible that the fittest

individual in any population may be lost simply by not being chosen. Recall that

elitism is the act of taking the best member of a population and copying it without

changes to the next generation. Without some form of elitism the population is not

guaranteed to converge, either on an optimal solution or otherwise.

Pair-wise elitism is a further refinement developed for this project to further direct

convergence. In the pair-wise system a new member is created as normal by both

selection and the genetic operators to fill each position in the new generation. If the

fitness of the new individual is less than the member who previously occupied that

position then the new member is discarded and the previous member is replaced.

Pairwise elitism was shown to give good diversity and slower premature convergence

on some types of problems (see section 4.3.2)

The pairwise approach also guarantees that the average fitness of the overall

population will convergence on the elite fitness. Since both of these elitism techniques

have potential side effects on the evolutionary system they have associated with them

Co-evolution of cooperative behaviour

 37

probabilities that decide whether they are applied each epoch. (Eg. If the elitism

probability defined is 0.6 then elitism will be performed during 60% of the

generations)

3.4 Selective genetic operators

3.4.1 General comments

The three genetic operators implemented were crossover, mutation and inversion.

Since the encoding has such a specialised form it was decided that these operators

should be tailored for this specific encoding.

The nature of the genetic methodology does not require this to be the case though all

information that is general to the problem domain and does not bias solutions helps

speed the evolution.

These genetic operators define each position in the chromosome to be in of one of

several categories. When choosing a position within the chromosome (eg. a location

for crossover when performing crossover) each category has an associated probability

assigned so that some places are more likely to be chosen than others.

3.4.2 Weighted values for crossover position selection

Intuitively it was decided that there are two main ways of recombining two networks

to construct a new network using crossover.

The first is to exchange hidden nodes and this is reflected by defining a probability for

the position between genes on the chromosome.14

The second is to exchange incoming and outgoing weights between hidden nodes.

This is reflected again by defining a probability for the gene position where the output

values start.

14 ie Between hidden node information on the DNA

Co-evolution of cooperative behaviour

 38

Finally of course there must be a chance that a crossover point can occur anywhere

since this is the strength of the underlying evolutionary principle of crossover. For the

simplicity of the implementation it was coded so that in the third case it was possible

to choose a position from case one (between nodes) or case two (between incoming

and outgoing weight information) making the three possibilities not mutually

exclusive.

3.4.2.1 An example of possible crossover positions

In the case of a network with 2 inputs, 3 hidden nodes and 3 outputs a chromosome is

of the form ABIIOOOABIIOOOABIIOOO15. Figure 3.4-1 shows the three possible

positions then for crossover.

Case 1: crossover location between nodes

Case 2: crossover location between incoming and outgoing weights

Case 3: crossover location anywhere

A B I I O O O A B I I O O O A B I I O O O

A B I I O O O A B I I O O O A B I I O O O

A B I I O O O A B I I O O O A B I I O O O

10 Figure 3.4-1: Possible choices of the location of a crossover point

Each of the three positions has associated with it a relative probability say Cnode,

Cweight and Canywhere. If Ctotal is defined as Cnode + Cweight + Canywhere then the

probabilities of each occuring is Cnode/Ctotal, Cweight/Ctotal and Canywhere/Ctotal

respectively. Once one type has been chosen by these probabilities it is used to

determine the offset within a randomly chosen gene on the chromosome.

15 A-node active position, B-bias term, I-incoming weight, O-outgoing weight

Co-evolution of cooperative behaviour

 39

3.4.3 Weighted values for mutation position selection

Weighted probabilities were also assigned to different positions on the chromosome

for the choice of the position where mutation could occur. Again these were chosen to

reflect the different attributes that the positions represent. Two types of position were

chosen; firstly the active position and secondly the positions of weight values

(including the bias term). Since the changing of an active position effects the network

much more than the changing of a weight the relative probability of active position

mutation was assigned much lower than that of a weight value. The algorithm for

deciding where mutation occurs is the same as that used in the case of crossover. First

a total is calculated and used to determine which type of position the mutation will

occur at (active or weight position). Once this is determined it is used to calculate the

offset in a random gene of the chromosome.

3.4.4 Inversion positions

Inversion was applied on the scope of whole nodes so that the functionality of the

network remained the same. It was believed that inversion at the level of an individual

connection weight would be too destructive and hence serve no purpose. Inversion

even though it brings out problems dealing with competing conventions was still

included to increase diversity and allow the possibility of evolving networks with

multiple instances of the same hidden node. Inversion was assigned the lowest

probability of occurring so that some stability was retained in terms of a nodes

position in the chromosome.

3.5 Population Management

3.5.1 The concept of sub-populations and migration

The problem of pre-mature convergence with any evolutionary strategy is reduced by

somehow maintaining population diversity. One means of maintaining this diversity is

to split each population up into a number of distinct sub-populations so that a

dominant individual in a sub population can not effect the whole population. However

if these sub-populations are keep distinct then the global search power of the system is

lost. Migration is the act of moving a number of individuals between the sub-

populations

Co-evolution of cooperative behaviour

 40

3.5.2 Migration implementation

Migration is performed with a predefined constant frequency. If migration occurs too

frequently then the diversity of keeping sub-populations is lost. On the other hand if it

occurs not frequently enough then each sub-population will converge on separate

values. The number of individuals involved in a migration is a predefined constant,

usually a small fraction of the sub-population size.

Each time migration occurs a number of individuals are chosen from each sub-

population to be moved to the next16 sub-population.

The individuals that are chosen for migration must be located in the same position in

the sub-populations so that members are not lost. This concept is best explained with

the following two examples.

Consider a system of 24 individuals with 3 sub-populations, each consisting of 8

members and a migration size of 3 individuals. Figure 3.5-1 describes the two

possibilities for choosing the members who will be migrated.

The left-hand side shows the result from choosing a single random section of the

population and performing the migration with each sub-population using this single

section. As can be seen all members are retained with those in present in the section

change their sub-population membership.

The right-hand side describes the result of choosing a unique section for migration in

each sub-population. In this case some members are lost when others are copied over

them (denoted by bold lining in the final set of the right hand side). In the same way

some members under this scheme have a second copy of themselves created in the

population. Since this loss of members occurs randomly, regardless of the fitness

values of the members involved, it should be avoided and the left hand approach

adopted.

16 Cyclically next

Co-evolution of cooperative behaviour

 41

Original populations

Positions differentPositions the same

11 Figure 3.5-1: Migrating with and without a single subsection

3.5.3 Introducing completely random members

To further maintain diversity in each sub-population a completely new random

individual can be introduced each epoch with a predefined percentage chance. To

cause the minimum disruption to the population this new individual should take the

place of the member with the lowest fitness. This concept can be thought of roughly

as a mutation operator working on the whole population since the role of a mutation

operator is to introduce new material into the system.

3.6 Incorporating Back Propagation

3.6.1 How it can be useful

As previously stated back propagation is useful as a fine tuning technique when the

genetic system has converged. It can also be useful near the start of a simulation to

direct the evolution towards a desired type of solution. Such usage though introduces

human bias into the system which should be avoided whenever possible.

3.6.2 Why back propagation was avoided

Back propagation is only useful when exact solutions are already known. Since one

point of this project was to apply evolutionary techniques where such exact solutions

are unknown it was avoided, even though it has strengths when dealing with neural

network architectures.

Co-evolution of cooperative behaviour

 42

3.6.3 Benefits of not using back propagation

Back propagation uses differentiation of the transfer function to determine error

magnitude information. It is thus required that the transfer function is continuous. If

back propagation is not to be used then a continuous transfer function is not required.

Simpler functions such as a standard step function can then be used. Of course back

propagation is applicable only to feed forward architectures and by avoiding it

completely more freedom is allowed when evolving the topology.

Co-evolution of cooperative behaviour

 43

4 Results without communication

As the code was developed a number of test cases were implemented. All cases

included evolving neural networks with the obtained results giving feedback for

further refinement of the algorithms and code implementation. The first cases

described in this section tested the details of the problems focusing on using one

population and evolving for tasks requiring only single entities. Communication

results are detailed in the next chapter.

4.1 Data prediction

The simplest and most common application of neural networks is the learning of a

simple data set. With the initial framework prepared for the network architecture a test

case of learning a random data series was trialed.

A data set of 10 elements was randomly defined associating 5 random inputs with 5

random outputs where these values varied from +1 to -1. A single population was

maintained with a crossover probability of 0.7 and mutation rate of 0.01. Inversion at

this stage had not been implemented. Fitness was first defined as the sum of the mean

square error. Figure 4.1-1 shows the results from a evolution of 30,000 epoches. Since

the system makes a great improvement in the first few hundred epoches figure 4.1-2

shows the same graph from epoch 3000 to epoch 30000 to increase clarity.

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81

10
1

12
1

14
1

16
1

18
1

tim e * 1 5 0

M
S

E
 f

it
n

es
s

5x5x5

5x4x5

5x5x5

5x7x5

5x6x5

5x5x5

12 Figure 4.1-1: Evolving data series prediction, MSE fitness 1

Co-evolution of cooperative behaviour

 44

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 1 4 1 6 1 8 1 101 121 141 161 181

tim e * 1 5 0

M
S

E
 f

it
n

es
s

5x5x5

5x4x5

5x5x5

5x7x5

5x6x5

5x5x5

13 Figure 4.1-2: Evolving data series prediction, MSE fitness 2

In can be seen that, as expected, the networks with the most hidden nodes performed

the best.

Next the fitness was defined as the mean square error result multiplied by the MSE by

the number of hidden nodes exhibited in the network. Results such as figure 4.1-3,

again showing only epoches 3000 to 30000, show the rewarding of networks with less

nodes though they perform the worse.

0

0.5

1

1.5

2

2.5

3

3.5

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

t ime x 150

M
S

E
 x

 #
h

id
d

en

5x5x5

5x4x5

5x5x5

5x7x5

5x6x5

5x5x5

14 Figure 4.1-3: Evolving data series prediction, MSE x #hidden fitness

Even with this ability to somewhat define a need for a small number of nodes the

evolutionary system could not improve much past a mean square error of 0.1. With

only 10 values in the data series varying between +1 and –1 this is not a very accurate

result. This is an example where the evolutionary system has been able to quickly

give an approximate solution without being able to fine tune.

Co-evolution of cooperative behaviour

 45

4.2 Straight line movement

The first test case of an actual controller was the evolution of a simple straight-line

walker. A single entity controller was evolved in a single population for the task of

maximising the distance travelled in 200 turns.

As inputs the controller received a series of random vectors of length five. The values

were random but predetermined so that on each execution of a simulation an entity

would receive the same data series.

With outputs being a decision to turn left, turn right or walk forward it is simple to

determine the perfect entity for this task is one that always walks forward. The fitness

function was simply then the distance travelled after the 200 turns.

0

5 0

1 0 0

1 5 0

2 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

e p o c h e s

d
is

ta
n

ce

e l i te a v e r a g e

15 Figure 4.2-1: Evolution of a simple straight-line walker

Figure 4.2-1 shows the average values of three simulation executions. A population

size of five was used with a mutation rate of 0.01 and crossover rate of 0.7. A

maximum number of four hidden nodes were used. Again by this stage inversion was

has still not be implemented.

Co-evolution of cooperative behaviour

 46

Since it is desirable to reward a low number of hidden nodes the simulation was

further refined to have the fitness values divided by the number of exhibited hidden

nodes. Figure 4.2-2 shows the average of three runs with the same values for

population size and mutation and crossover rates. For each population a perfect

walker was evolved before epoch 20 though it took longer to further evolve the

networks to use a lower number of hidden nodes.

0

5 0

1 0 0

1 5 0

2 0 0

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

e p o c h e s

d
is

ta
n

ce

e lite a v e r a g e

16 Figure 4.2-2: Evolution of a simple straight-line walker rewarding fewer hidden

nodes

Two plateaus are apparent in the graph. The first is from epoch 13 to epoch 23 where

two of the three runs have evolved a perfect walker with 2 hidden nodes. The third

run took longer to evolve to this degree and as a result this plateau is just under 10017.

The second longer plateau from epoch 30 to epoch 53 is the result of two of the runs

evolving the perfect walker using only one hidden node. All three had finally evolved

the perfect walker by epoch 60 with only one hidden node.

This example though it shows good results in terms of the evolutionary system, is

somewhat contrived in terms of the networks. The solution for this problem is to

always walk forwards, ie give a high output on the forward output node and low

values on the turn left and turn right output nodes. Quite often with a random weights

defined for a network one hidden node will dominate all the other nodes in the layer

17 100 being the perfect score for a network with two hidden nodes.

Co-evolution of cooperative behaviour

 47

resulting in one single output node firing constantly. This was apparent with one

simulation run where a perfect walker was present in the first random population

4.3 Path navigation

4.3.1 Navigating a simple path

For a more complex version of evolving a walker the problem was changed to an

entity having to navigate along a simple path. This time the inputs were the

coordinates of the entity (x and y) and the direction faced (in discrete multiplies of 90

degrees). Outputs defined the decision to turn left, turn right and to move straight

ahead. The entities had no direct knowledge of the path with fitness calculated as a

function of the amount of path covered in a given fixed amount of time. The path can

be thought of as being on a black and white grid with the black squares defining the

path.

The first simplest fitness function tested was defined as rewarding one point towards

the fitness for each black square traversed. To ensure that the same piece of the path

can not be counted twice every time a black square was covered it was changed to

become white.

S

E

S

E

17 Figure 4.3-1: A good and bad attempt at navigating a simple path

This fitness function works but is rather discontinuous. For example the two possible

walks shown for a simple path in figure 4.3-118 are both allocated the same fitness

under this function even though the first is obviously a better solution.

18 S-start of path, E-end of path

Co-evolution of cooperative behaviour

 48

This presents a good example of being able to put prior knowledge of the problem

into the evolutionary system, in this case to produce a more continuous fitness

function. By grey scaling the grid with extra grey squares that represent partial fitness

points the fitness function can more accurately rate potential solutions. The path can

then be of the form shown in figure 4.3-2. Now fitness is assigned by allocating points

based on how dark the square covered is. This concept can even be extended to define

outer regions to represent negative values so that going in the wrong direction can be

penalised.

S

E

18 Figure 4.3-2: Grey scaling the path for a more continuos fitness function

The evolutionary system was able to evolve a solution for traversing the path as well

as bringing out an interesting trait in the fitness function that had been previously

unthought of. Figure 4.3-3 shows the elite and average member information for a

single evolved population of 30 members.

0%
20%
40%
60%
80%

100%
120%

1 3 5 7 9 11 13 15 17 19 21 23 25 27

epoch x 3

co
m

p
le

te
d

elite average

19 Figure 4.3-3: The evolution of a simple path follower

Co-evolution of cooperative behaviour

 49

A perfect navigator is evolved by epoch 30 but it can be noted that an individual was

eventually evolved that gained more than 100% on a single trial. This is a result of the

fixed amount of turns given to traverse the path being more than what was required.

This combined with the grey scaling that was applied for a smoother fitness function

gave the opportunity for some individuals to slightly ‘cheat’ as shown in figure 4.3-4.

A good example of greedy optimisation.

S

E

20 Figure 4.3-4: Path followed by the elite member evolved

The number of hidden nodes evolved for this simple path averaged at just over four,

while the entities that solved the path normally usually had two hidden nodes. These

figures roughly correspond to the number of turns needed for completing the path.

Annealing of the simulation length was then tested with the relationship between the

simulation run length and the current epoch described by figure 4.3-5. Note that the

length flattens at 16, the time needed to traverse the entire path.

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

e p o c h

si
m

u
la

ti
o

n
 le

n
g

th

21 Figure 4.3-5: The relationship between epoch number and simulation length

Co-evolution of cooperative behaviour

 50

Figures 4.3-6 and 4.3-7 show the comparisons between using this annealing technique

and allowing each epoch to run for a full term. Again these graphs represent the

average of three complete program executions. The annealing approach took

approximately 40% of the time to execute though it took longer to evolve with both

trials eventually evolved a perfect member. In can be seen though that all diversity

was lost in the annealed case and as such the simulation relied only on mutation to

better the population.

a n n e a l e d t i m e

0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

1 7 13 19 25 31 37 43 49 55

e p o c h

co
m

p
le

te
d

e l i t e a v e r a g e

22 Figure 4.3-6: Evolution of a path follower with annealed simulation time

f i x e d l e n g t h

0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

1 7 13 19 25 31 37 43 49 55

e p o c h

co
m

p
le

te
d

e l i t e a v e r a g e

23 Figure 4.3-7: Evolution of a path follower with fixed simulation time

4.3.2 Navigating a more complex path

As a further test of the evolutionary system the path was extended to a more complex

design and the facility for pairwise elitism was implemented. Figure 4.3-8 shows the

more complex path used for testing without showing the grey scaled smoothing that

was used as before. A single population of thirty members was maintained with

crossover and mutation probabilities defined as for the simpler path example.

Co-evolution of cooperative behaviour

 51

S

E

24 Figure 4.3-8: A more complex path

Figure 4.3-9 shows the average evolution of the elite member from three runs using

no elitism, normal elitism and pairwise elitism. The pairwise approach performed well

in this task converging faster on the optimal path navigator.

0%

20%

40%

60%

80%

100%

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
epoch

co
m

p
le

te
d

none normal pairwise

25 Figure 4.3-9: Comparisons of different elitism techniques with the complex path

The pairwise approach also maintained greater diversity in the population compared

to the normal elitism approach. Figure 4.3-10 shows the average from three runs using

pairwise elitism. It demonstrates how the elite member’s fitness is kept almost a

constant value greater than that of the average fitness, indicating a reasonable level of

diversity throughout the evolution of the population.

Co-evolution of cooperative behaviour

 52

0%

20%

40%

60%

80%

100%

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

epoch

co
m

p
le

te
d

elite average

26 Figure 4.3-10: Evolution of a path follower using pairwise elitism

Figure 4.3-11 shows the average of three runs using only normal elitism. It can be

seen that most of the diversity is lost, in this case around epoch 20. Any

improvements in the elite member once this diversity is lost are a result of the

mutation operator.

0%

20%

40%

60%

80%

100%

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

epoch

co
m

p
le

te
d

elite average

27 Figure 4.3-11: Evolution of a path follower using normal elitism

4.4 Vision

4.4.1 Vision Implementation details

A simple vision system was developed as a means of representing more realistic

simulation models to mimic what would actually be used in real world applications.

The provision for vision also allows another form of communication if entities have

the ability to change the colour they display to other entities.

Co-evolution of cooperative behaviour

 53

Though vision was developed it was not part of the major test case, explained in

section 5.3, due to the time restrictions of the overall project. Evolutionary learning

results were obtained that required vision but not using colour changing as a form of

communication.

Vision was implemented by assigning an entity a field of view and a number of

segments within the field of view referred to as ‘eyes’. With the direction of the entity

known it can be calculated whether other objects in the simulation model are visible

and, if so, which eye would ‘view’ the object. A mapping can then be defined from

what is seen by the eyes to a number of inputs for a network.

For example with 3 colour components being used to define the possible colour of an

object and 4 eyes within the field of view 12 inputs are needed (one for each colour

component within each eye). The signal that an eye sees is also scaled relative to the

distance to the viewed object to simulate depth cueing.

An example of a possible case of vision is shown in figure 4.4-1

28 Figure 4.4-1: Vision interpretation example

Co-evolution of cooperative behaviour

 54

4.4.2 Turning to the red pole

The vision system was tested with the task of turning towards a red object in a room

containing other objects of different colours, in this case two green poles, a blue pole

and a purple pole (red and blue). The colour of an object was defined in terms of 3

colour components (corresponding to red, green and blue).

The controller for the network used fifteen inputs for the 5 eyes with 3 colour

components and 3 outputs for turn left, turn right and don’t turn at all. The field of

view was 90 degrees with fitness defined as a function of the angle between the

direction the entity is facing and the angle to the red pole. This angle was calculated

each turn and summed over the entire simulation to give one fitness value. Since it

was required that low values of this angle represented a good behaviour the fitness

was inverted when the simulation was completed.

To incorporate some degree of non-determinism the entity started a constant distance

from the red pole but with a direction defined within +/- 40 degrees of facing it. This

ensured that the red pole was within the field of view of the entity at the beginning of

the simulation. Since this starting angle changed each entity was tested 4 times with

an average performance considered.

Figure 4.4-2 shows the average of three executions of the evolution for learning this

task. A single population of 30 members was maintained with the evolution running

for a total of 15 epochs and each entity being given 20 turns per trial.

Co-evolution of cooperative behaviour

 55

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

epoch

fi
tn

es
s

Series1 Series2

29 Figure 4.4-2: Evolution of an entity using vision to turn towards a target object

Convergence occurred with the elite member able to turn towards the red pole in each

simulation. Even though the entity had the ability to not turn in almost all simulations

the evolved entity turned to face the red pole and then repeated oscillating between

turning left and right. It is hypothesised that this behaviour can be attributed to the

fact that the system was trained to in some cases turn left towards the pole and in

other cases turn right. Hence the outputs strengths for turning left and right were

much stronger then that of not turning. Once the entity had turned left19 to the red pole

then the strength of turning left became less and the turning right signal became

dominant. Once the entity had turned right the signal for turning left again became the

most dominant and the entity turned back, oscillating between the two.

4.4.3 Moving to the red pole

To force the system out of this oscillation process the system was changed. The not-

turning decision was replaced by the decision to instead walk forward with the fitness

changed to be a function of the distance from the red pole (to be minimised so again

the distance summed over all epochs was inverted). This time the system was unable

to evolve a performer for the task.

Figure 4.4-3 shows an average of 3 runs for learning this task with a population size

of 100 members and an evolution time of 40 generations. Though the graph shows

19 Without loss of generality.

Co-evolution of cooperative behaviour

 56

convergence of the average it can be seen the elite member improves very little with

the evolved behaviour simply always walking forward. This is a prime example of

how pre-mature convergence means it is possible for sub standard members in the

initial population to be able to dominate. In this case the elite members were members

with extremely high connections to the walk forward output resulting in the constant

behaviour of moving forward. With the entity facing in generally the correct direction

walking forward gave a high enough fitness so that the entities trying to learn to turn

as well as moving forward were unable to beat those who only walked forward.

0.0048
0.00485
0.0049

0.00495
0.005

0.00505
0.0051

0.00515
0.0052

30 Figure 4.4-3: Evolution of an entity using vision to walk towards a target object

Co-evolution of cooperative behaviour

 57

5 Results with communication

5.1 Hearing facilities

The most intuitive way to implement communication between distinct networks is to

reserve a number of nodes in the input and output layers for the purpose of

communication. A number of issues arise from the concept of using communication

dealing mainly with the nature of the simulation model. For example if one member

makes a broadcast, which of the others in the simulation receive it? If two members

are to broadcast at the same time how are the messages resolved to the one set of

inputs? Also with the simulation occurring with discrete time steps only one entity

can be considered to be moving at any time, bringing up questions dealing with when

other entities hear the broadcast.

Communication was implemented by using a temporary buffer in the world. Since

only quite simple models were tested this buffer effectively allowed one entity to hear

the broadcast made by the previous entity that had moved. This allows only

communication from one entity to one other entity but was not further refined since it

was all that was required.

5.2 Migration testing

Migration was implemented as specified before (section 3.5.2) with a number of sub-

populations maintained and parameters defined for migration frequency and migration

amount. Migration was performed cyclically to remove any favouring of centrally

positioned individuals.

Co-evolution of cooperative behaviour

 58

As a test of the migration system and how it could improve diversity a simple

homogenous communication model was developed. An entity had two copies cloned

and placed pseudo randomly20 in the same virtual environment. Inputs to the

controller were its current position and a message of length two from the other clone.

Outputs were reserved for the decision to move21 and for broadcasting a message to

the other clone. With the task being for the two clones to move together the only way

of achieving a high fitness without explicit knowledge of each others position was for

the two to broadcast to each other some function of their own location22.

The first trials performed could not evolve sensible behaviours due to a small fault in

the simulation model. It is interesting to note the error though as another example of

greedy optimisation of a fitness function giving an unexpected behaviour. When first

trialed the elite behaviour, evolved in less than 10 epochs, was simply for both clones

to move always towards the east23. With both entities moving the same direction and

hence maintaining the same distance apart, it was unsure how this was given a high

fitness. The problem lied in the size of the simulated world. It turned out that an entity

was able to reach the boundary of the world in the number of moves allocated to it for

each simulation regardless of where it randomly started. When an entity reached the

edge they were kept there instead of wrapping around. Both then learned to simply

move to the right wall and become stuck there, relatively close to each other and

hence obtaining a high fitness. Yet another example of sub-standard random

individuals at the beginning of an evolution dominated the population early.

Increasing the size of the simulation world solved this problem for use in later

examples.

Three sub-populations, each consisting of 100 members, were maintained for the next

trial. Firstly an execution was performed that included no migration between the three

20 Randomly positioned around each other so that the distance at the start of the simulation was

constant. This ensured there that each entity had an equal start while still retaining some degree of non-

determinism in the model.
21 In this case being the 4 directions north, south, east and west
22 Though it turns out this was not the case!
23 Though without loss of generality the observed behaviour could have been to move any direction.

Co-evolution of cooperative behaviour

 59

populations, described by figure 5.2-1 As can be seen all three populations converged

at around the same time with a similar fitness for the elite member.

0

2

4

6

8

10

12

1 10 19 28 37 46 55 64 73 82 91 100
epoch

fi
tn

es
s

31 Figure 5.2-1: Evolving three sub-populations without migration

The simulation was then run again with a migration this time being applied. The

migration rate was chosen to be each 20 epochs since convergence occurred at around

this time in the previous test. Each migration moved 5 individuals cyclically choosing

all the same numbered members so that none where unfairly lost (as discussed in

section 3.5.2). Figure 5.2-2 shows the result from an execution with the vertical lines

placed corresponding to the epochs when migration occurred. It can be seen that the

migration proved beneficial each time it was applied noting that before each migration

instance each sub-population had reached a stable state. It also gave a higher overall

converged value with each population having the same elite members fitness (and it

turns out the same elite member as expected).

0

2

4

6

8

10

12

1 9 17 25 33 41 49 57 65 73 81 89 97

32 Figure 5.2-2: Evolving three sub-populations with migration

Co-evolution of cooperative behaviour

 60

Even though having migration gave a better result it was unsure how much was

gained from migration explicitly. In the case without migration each member only had

it’s own sub-population of 100 to breed with. When migration is incorporated the

breeding population can be considered to be all 300 members24. A further test was

then constructed that tested one single population of 300 individuals instead of 100 to

see what difference a larger population had on this test problem. Figure 5.2-3 is the

result of this evolution and has interesting implications. As expected it performed

better than the single populations of 100 members in approximately the same number

of epochs but did not outperform the instances of maintaining the separate sub-

populations in the same time frame of 100 epochs. For this problem then it shows that

maintaining sub-populations can outperform a single population the size of the sub-

populations combined.

0

2

4

6

8

10

12

1 9 17 25 33 41 49 57 65 73 81 89 97

33 Figure 5.2-3: Evolving all three sub-populations as one single population

Though this example shows how migration can work well it still did not evolve a

behaviour in the individuals that was expected. Though the expected results were that

the entities would evolve a means of broadcasting to each other some function of their

location, the entities actually paid little attention to the message passing. Instead a

system was evolved where the entity controller learnt to just move towards one

location. Since both entities present are clones then both move to the same location

24 Though a member only has the chance to breed with the whole population if it is involved with each

migration instance.

Co-evolution of cooperative behaviour

 61

reducing the distance apart and hence satisfying the requirements of the fitness

function. Once again this is example of an unexpected behaviour due to the extremely

greedy nature of the evolutionary paradigm along with a loosely defined fitness

function.

5.3 Major test case model description

For a major test case a game of “follow the leader” was chosen. This simulation

game includes two or more entities, one of which is the ‘leader’ with the others being

‘followers’. The goal of the game is that the followers must all move towards the

position of the leader25. This model is similar in nature to the previous example but

uses two distinct types of individuals that require different behaviours. It was hoped

that this distinction would this time force a need for communication as opposed to

both just moving to the one position.

All entities were again made aware of their global position in the simulated world and

as before had no explicit knowledge of the position of any other entities. Two nodes

in the input and output layers were reserved for the purpose of communication

between entities. This amount was chosen to correspond to the two coordinates used

to determine the position of an entity. One possible solution for using this

communication could then be to assign one message position for relaying the details

of each coordinate. Inversion was implemented at this time though without specific

data gathered on the effect of inversion it is unsure of the effect inversion had.

5.4 The homogenous approach

The homogenous approach uses a single population for evolving controllers that learn

the task of being both a leader and a follower. The population is split into a number of

sub-populations with a migration system used. Since both the behaviour for a leader

and a follower needs to be learnt there needs be provision in the input and output

layers of each controller for the requirements of both tasks. Along with this there is

required some means of informing the network which role it should play.

25 Due to time restraints the simulation was only tested using a leader that remained stationary

throughout a simulation execution. For this reason perhaps “go to the leader” would have been a more

accurate name.

Co-evolution of cooperative behaviour

 62

The inputs required were then…

• 1 node for specifying whether this entity should act as a leader or follower.

This was implemented by hard wiring a signal of 1 to leader controllers

and a signal of 0 to follower controllers.

• 2 nodes for representing the position of the entity. With the size of the

world having co-ordinates ranging from 0 to 1. Both entities needed to

make use of these signals. The leader needed to map them in some way to

the outputs reserved for messages and the follower needed to use this

along with the incoming message to decide in which direction to move.

• 2 nodes for the actual receiving of messages. Since the follower only used

these the leader had them hard wired to zero26.

The outputs required were…

• 4 for the possible decisions to move ‘north’, ‘east’, ‘south’ and ‘west’.

Since the leader was not implemented to move these signals were ignored

by leader controllers.

• 2 nodes for the broadcasting of messages. This time these nodes are only

used by the leader controllers and ignored by the follower controllers.

Testing of the homogenous type of controller was relativity straightforward. Two

clones were constructed and placed in a simulated environment with one being

assigned to act as the leader and the other designated as the follower.

Fitness was defined as the distance between the leader and follower summed over

each turn of a simulation run. Again as this value needed to be minimised the

complete sum was inverted.

26 A possible extension of the problem here could be to treat these as normal input of the message

signal so that the leader would have to leader to ignore them.

Co-evolution of cooperative behaviour

 63

Note that in this case creating multiple instances of the follower in the simulation

model can improve the accuracy of testing of the follower role. With multiple

followers in different positions a better representation of how the follower works can

be obtained. Multiple followers are also easy to incorporate into the fitness function

by summing the distance from the leader to each follower.

5.4.1 Homogeneous evolution results

The initial tested simulation used a single population divided into 5 groups of 30

individuals. A crossover rate of 0.8 was defined with a mutation rate of 0.01 and

inversion rate of 0.001. Unfortunately a number of tests all showed the system was

unable to evolve a system of communication between the leader and the follower even

though it displayed normal, albeit slow, improvement and convergence of elite

members and average member fitness values. Even still an interesting behaviour was

observed where the overall elite member from a number of program executions

ignored all communication but managed to evolve followers that moved generally

towards the centre of the simulated world. Again this shows a case of the system not

being able to evolve the desired result but still being able to define a behaviour that

satisfied the fitness function.

It was decided one key factor that caused the system to fail was the difference in

complexity of the networks required for a leader and a follower. Where as the leader

ideally must just repeat its position, the follower needs to interpret its position as well

as the message from the leader and decide on a direction to move. This is made

especially difficult for the follower since while it is evolving the leader also is

evolving and hence initially gives garbage values as its message to the follower.

Figure 5.4-1 shows the decisions by the elite follower on how to move. This figure

was obtained by placing the entity evolved in various positions on a grid and for each

position placing the leader in 20 random positions. All arrows show the decision made

with black arrows indicating a move towards the centre and the light grey arrows

indicating a move away from the centre. A majority of black arrows indicates that the

behaviour evolved was to move towards the centre of the grid which is the effective

average position of the leader given a number of random placements.

Co-evolution of cooperative behaviour

 64

34 Figure 5.4-1: The movement decision of a follower

5.5 The heterogenous approach

In this case the model task was unchanged but separate populations were maintained

for the roles of leader and follower. Each population was again broken into sub-

populations to maintain diversity with migration used between sub-populations of the

same population (ie no breeding between leaders and followers)

Recall that the heterogenous approach has a number of advantages and disadvantages

when applied to a team problem.

5.5.1 Population management

The major advantage is that the complexity of a single network is reduced. In the

homogeneous case of ‘follow the leader’ it was required that each single member had

to learn both the tasks of being a leader and a follower. By using a heterogenous

approach we evolve networks that are more specialised for the simple tasks of being

only a leader and only a follower. By maintaining separate populations we also gain

control over the relative time spent evolving each distinct type of team member. For

example in the case of ‘follow the leader’ a large population of followers can be

maintained to reflect the need for more time to be spent on them since they require

more complex networks.

Unfortunately there are associated disadvantages with using heterogenous evolution.

As stated before (section 2.5.1) there are problems with the selection of the members

to make up a team and also the allocation of fitness calculated for each attempt at the

task.

Co-evolution of cooperative behaviour

 65

5.5.2 Team selection

Recall that when using team based problems determining the fitness of an individual

requires an entire team. Testing a single member thus requires that other individuals

be chosen. The result of the fitness calculation then becomes dependent on the ability

of the other team members, not just the ability of the member being tested. This

brings up the possibility of a good entity being assigned a bad fitness just because it

had poorly performing team members. Two ways to overcome this problem have been

tried with varying results defined as follows…

5.5.2.1 Elite team completion

One approach is to complete the team with the relevant elite members from each

population. This can be on the scale of an entire population, for example if testing a

follower then complete the team by adding the overall elite member from the leader

population. In this case since each member is tested only with specific other members,

namely the elite members, it was found this technique converged quickly on a sub-

optimal solution, mainly due to a lack of diversity of the teams constructed.

Alternatively we can add a slight random element by choosing to complete the team

with the elite member of a random sub-population of the leader population. This gave

more diverse results in the case where there were enough sub-populations but

included a completely random event being the selection of which sub-population to

use. As each sub-population converged this technique became effectively the same as

selecting the overall elite member of the entire population.

5.5.2.2 Non-deterministic random team completion

For a more non-deterministic team we can use the standard selection method applied

normally to each sub-population to choose members to complete the team. Since this

allows the possibility of every member having a chance to be in each team27 it should

be performed several times for each test with an average taken.

5.5.3 Heterogenous evolution results

It was found that this approach had trouble using the communication to complete the

task.

27 Proportional to its fitness relative to the other members of its population.

Co-evolution of cooperative behaviour

 66

Two types of behaviours were observed as…

1. The followers ignored the output of the leader and moved again to

approximately the middle position. When this happened it was the case that

one type of follower was dominant early on and the leaders had trouble

working with the proper followers in evolving a communication. This is

similar to the example of evolution described in section 5.2.

2. The followers and leaders only learnt to express one coordinate in the two

decision slots. The followers moved to obtain the same value as the leader in

one coordinate but not the other.

An example of the output from a leader is shown in figure 5.5-1. Taking the elite

leader evolved and testing the output it gave from various positions on a grid

generated these figures. The figures have the x and y axes representing the position of

the leader and the z-axis representing the output given. The left shows the values

generated on the first output communication node and the right shows the values from

the second output communication node.

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.23-0.24

0.22-0.23

0.21-0.22

0.2-0.21

0.19-0.2

0.18-0.19

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.23-0.24

0.22-0.23

0.21-0.22

0.2-0.21

0.19-0.2

0.18-0.19

35 Figure 5.5-1: Communication output of the leader network

It was expected that each output nodes would be allocated to a separate co-ordinate

though it can be seen this is not the case.

No behaviours were observed where communication was learnt accurately for both

co-ordinates. Extending the number of slots reserved for the message from 2 to 3

slowed the evolution but still gave no examples of good communication. A more

Co-evolution of cooperative behaviour

 67

accurate fitness function needs to be developed along with a more complex simulation

environment specialised for this problem.

These results are strongly co-evolutionary in the sense that combinations of leaders

and followers from different executions can not perform together. This is due to the

functionally equivalent communications evolved that are incompatible across

different executions.

Co-evolution of cooperative behaviour

 68

6 Conclusions and further work

It seems that the results gained were strong in the aspects general to all evolutionary

techniques (such as migration as a means of maintaining diversity). However the

aspects of the project dealing with the evolution of communication did not perform as

well as was initially expected.

It was the aim of the project to develop a system as generic as possible, applicable to a

wide number of communication applications. It was initially considered important to

be able to develop a communication system for a problem without having to input

explicit knowledge of how the communication would be performed and reward only

in terms of performance. It seems though that desired behaviours were obtained only

from problem examples using a very precise fitness function. Such a complex fitness

function in many ways outweighs that fact that minimal input is required towards how

the communication would act and hence how behaviours should be rewarded.

Any such simulation system relies on complexity being apparent in either the fitness

function or the simulation model. Most of the problems studied use an extremely

simple simulation model and hence required a complex fitness function so individuals

in a population could be correctly and fairly graded against each other. It is believed

that moving the complexity of the problem from the fitness function to the simulation

model would give results where correct behaviours were evolved from more simple

fitness functions. The one case where good results were obtained from a very simple

fitness function was in the case of applying vision where the simulation model was

quite complex.

The idea of having minimal input into how the communication system will work

works though is unrealistic in any real world application. Evolutionary techniques

most definitely benefit from having general problem specific knowledge as part of the

system (such as the selective positioning genetic operators, useless in any other

application not working on the type of networks developed for this project). In

hindsight it is believed that better and more complex results could have been obtained

by allowing some provision for entering details of the desired communication system

Co-evolution of cooperative behaviour

 69

to be used. This could be in terms of using some form of back-propagation to ‘steer’

the evolution in the correct direction or perhaps by abstracting to common higher

level communication ideas such as ‘turn towards your left’ or ‘move towards me’.

Though neural networks worked a means of providing an object for the evolutionary

system to work upon it seems they could have been refined more to work with the

system, not just refining the system to work with the networks. Most results gave non-

standard network designs where knowledge was stored in terms of usually of one

hidden node per problem aspect instead of being distributed across the entire network

topology. This is to be expected since crossover implicitly requires that all knowledge

is in distinct areas so it can isolated and combined.

In general it is felt that the project had many successes and a number of possible

extensions and aspects of possible further work.

1. Firstly the complexity of the simulation model needs to be extended to relieve

the pressure for the need for a overly precise fitness function. Since it has

already been implemented and tested vision would be a good concept to

incorporate into a system that requires communication.

2. Evolutionary techniques are also strong in adapting solutions to keep up with a

dynamically changing model. A number of aspects with the communication

and overall evolutionary system could be researched in terms of dynamic

problems where the communication system could not be static.

3. The neural network implementation needs to be refined so that it is more

specially suited to the strong and weak points of the evolutionary system. It

could also include further complexity of possible network designs to

incorporate multiple hidden layers, non fully connected architectures and

recurrent links.

4. More input can be added by incorporating some means of back propagation as

a means of directing the evolution. In this way individuals evolved from one

execution could perform and make teams with individuals from other

evolution executions. This is feasible in simple problems where we can outline

the desired communication but in more complex problems we may not be able

to define where we need to ‘steer’ the evolution to.

Co-evolution of cooperative behaviour

 70

The lighter side of a thesis

On the lighter side of things this graph shows the evolution of a thesis, namely this

one! This is a good chance for people to catch me out by checking whether I was

actually doing work on whatever night! Thanks for reading this far at least…

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000

lit review

coding

assembling coding
notes

realisation that I was repeating lit review!

writing up
including code

exams

ideal thesis evolution

nightmare scenario

cleaning up

Co-evolution of cooperative behaviour

 71

Bibliography

Angeline, P., Saunders, G., Pollack, J., 1994 “An evolutionary algorithm that
constructs recurrent neural networks” IEEE Transactions on neural networks, (5)1
:54-65, January

Belew, R., McInerney, J., Schraudolph, N., 1989, “Evolving networks: Using genetic
algorithm with connectionist learning.” Technical report CS TR #95-01, Artificial
Intelligence group, Iowa State University, January.

Branke, J., 1995, “Evolutionary algorithms for neural network design and training”
Proceedings of the 1st Nordic workshop on genetic algorithms and its applications.
Vaasa, Finland.

Braun, H., Weisbrod. J., 1993, “Evolving neural feedforward networks” Proceedings
of the conference on artificial neural networks and genetic algorithms. Springer
Verlag, :25-32

Cliff, D., Harvey, I., Husbands, P., 1993, “Incremental evolution of neural network
architecture for adaptive behaviour” Proceedings of the first European Symposium on
Artificial Neural Networks. :39-44

Collier, P., Personal communication.

Collins, R., Jefferson, D., 1991, “AntFarm: Towards Simulated Evolution”, Artificial
Life II, Addison-Wesley :579-601

Dalton, C., Personal communication.

Dalton, C., “Genetic algorithms against the crozzle puzzle.” An honours thesis
submitted 1995

Esparcia-Alcazar, A., Sharman, K., 1995 “Evolving Recurrent Neural Network
Architectures by Genetic Programming” Department of Electronics & Electrical
Engineering, University of Glasgow. Glasgow, Scotland.

Fraser, A., 1962, “Simulation of genetic systems: Journal of Theoretical Biology” Vol
3. :329-346

Fogel, L., 1962, “Towards Inductive Inference Automata” Technical report GDA-
ERR-AN-222, General Dynamics, San Diego.

Fogel, L., 1966, “On the design of Conscious Automata” Final report under contract
#AF49(638)-1651, AFOSR, Arlington, VA. USA.

Fogel, L., Burgin, G., 1969, “Competitive Goal-seeking through Evolutionary
Programming” Final report under contract #AF19(628)-5927, Air Force Cambridge
Research Labs.

Co-evolution of cooperative behaviour

 72

Fogel, D., Fogel, L., Porto, V., 1990 “Evolving Neural Networks” Biological
Cybernetics Springer-Verlag vol 63 :487-493

Fogel, D., 1993, “On the philosophical differences between evolutionary algorithms
and genetic algorithms” Proceedings of the second annual conference on evolutionary
programming

Fogel, D., 1996, Evolutionary computation: towards a new philosophy of machine
intelligence

Grefenstette. J., 1986 “Optimisation of Control Parameters for Genetic Algorithms”
IEEE Trans. Sys., Man., Cybern., Vol6 :122-128

Goldberg, D., 1989, Genetic Algorithms in Search, Optimisation and Machine
Learning Reading, MA: Addison Wesley.

Gruau, F., 1994, “Genetic micro programming of Neural Networks.” Advance in
Genetic Programming, The MIT Press.

Grefenstette, J., 1994, “Evolutionary Algorithms in Robotics” Proceedings of the
International Symposium on Robotics and Manufacturing. August :14-18

Grefenstette, J., Shultz, A., 1994, “An Evolutionary Approach to Learning in Robots.”
Proceedings of the machine learning workshop on robot learning, 11th International
Conference on Machine Learning. :65-72, New Brunswick, New Jersey

Haynes, T., Sen, S., Schoenefeld, D., Wainwright, R., 1995, “Evolving a team”
Working notes of the AAAI-95 Fall Symposium on Genetic Programming. :23-30. Eric
Siegel and John Koza. AAAI press.

Holland, J., 1962, “Outline for a logical theory of adaptive systems” Journal of the
association for computing machinery. New York NY. USA. Association of
computing machinery, Vol 3. :297-314.

Holland, J., 1975, Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press.

Koza, J., 1992, Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: The MIT press

Koza, J., 1994, Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: The MIT press

Kursawe, F., “Evolution Straegies for Vector Optimization”. University of Dortmund,
Germany. Email kursawe@LS11.infomatik.uni-dortmund.de

Lewis, M., Fagg, A., Solidum, A., 1992, “Genetic programming approach to the
construction of a neural network for control of a walking robot” IEEE International
Conference on Robotics and Automation, vol 3 May, :2618-2623 IEEE Computing
Society Press.

Co-evolution of cooperative behaviour

 73

Luger, G., Stubblefield, W., 1993, Artificial Intelligence: structures and strategies for
complex problem solving. The Benjamin/Cumming publishing company, inc.,
Redwood City, California. USA.

Luke, S., Spector, L., 1996, “Evolving teamwork and coordination with genetic
programming”
The genetic programming 96 conference proceedings, Stanford, July 1996

Maher, M., Poon, J., 1995, “Co-evolution of the Fitness Function and Design Solution
for Design Exploration” IEEE international conference on Neural networks and
evolutionary computation :240-244

Marshall, S., Harrison, R., 1991, “Optimisation and training of feedforward neural
networks by genetic algorithms” Proceedings of the second International Conference
on Artificial Neural Networks, :39-43

Masters, T., 1993, Practical neural network recipes in C++, Academic Press, San
Diego, USA

Michalewicz, Z., 1992, Genetic Algorithms + Data Structures = Evolution Programs
Springer Verlag, New York, USA.

Miller, G., Todd, P., Hegde. S., 1989, “Designing neural networks using genetic
algorithms.” Proceedings of the third international conference on genetic algorithms,
Schaffer. J., Arlington, :379-384

Nagahashi, H., Niwa, A., Agui, T., 1995, “Competition and Mutualism in a
Simulation of a Adaptive Artifical Organisms” IEEE international conference on
Neural networks and evolutionary computation :695-700

Rechenberg, I., 1965, “Cybernetic Solution Path of an Experimental Problem.” Royal
Aircraft Establishment, Library Translation #1122, August.

Reynolds, C., 1993 “An evolved, vision based behavioral model of coordinated group
motion.” Proceedings of the second International Conference on Simulation of
Adaptive Behaviour. :384-392, Jean-Arcady Meyer, Cambridge, MA. The MIT press.

Saha, S., Christensen, J., 1994, “Genetic design of sparse feedforward neural
networks.” Information Sciences, (79) :191-200

Salama, R., Hingston, P., 1995, “Evolving neural network controllers” IEEE
international conference on Neural networks and evolutionary computation :579-583

Schaffer, J., Whitley, D., Eshelman, L., 1992, “Combinations of genetic algorithms
and neural netwirks: A survey of the state of the art.” Proceedings of the International
Workshop on Combinations of Genetic Algorithms and Neural Networks. June :1-37

Schraudolph, N., Belew R., 1992, “Dynamic Parameter Encoding for Genetic
Algorithms,” Machine Learning, vol 9:1 :9-21

Co-evolution of cooperative behaviour

 74

Schwefel, H., 1965, Numerical Optimisation of Computer Models. Chichester, John
Wiley.

Schultz, A., 1994, “Learning Robot Behaviours using Genetic Algorithms”
Proceedings of the International Symposium on Robotics and Manufacturing. August
:14-18

Schultz, A., Grefenstette, J., 1994, “Evolving Robot Behaviours” Navy Center for
Applied Research in Artificial Intelligence, Naval Research Laboratory.

Spector, L., 1996, “Simultaneous Evolution of Programs and their Control
Strcutures.” In Advances in Genetic Programming 2, edited by P. Angeline and K.
Kinnear. Cambridge, MA: The MIT press.

Thierens, D., Suykens, J., Vandewalle, J., 1993, “Genetic weight optimisation of a
feedforward neural network controller.” Proceedings of the Conference on Artifical
Neural Networks and Genetic Algorithms. Springer Verlag, :247-283

Utrecht. U., Trint. K., 1994, “Mutation operators for structure evolution of neural
networks” Parallel Problem solving from Nature, Workshop-proceedings. Springer
Verlag, :492-501

Vamplew, P., Personal communication.

Wasserman, P., 1993, Advanced Methods in Neural Computing Van Nostrand
Reinhold New York NY. USA.

Whitley, D., Starkweather. T., Bogart, C., 1990, “Genetic algorithms and neural
networks: optimising connections and connectivity” Parallel computing. 14 :347-361

Wieland, A., 1992, “Evolving neural network controllers for unstable systems”
International Joint Conference on Neural Networks, vol 2 :667-673. IEEE computing
press

Yao, X., 1996, “Evolutionary Artifical Neural Networks” Department Of Computer
Science Australian Defence Force Academy

Yoon, B., Holmes, D., Langholz G., Kandel, A., 1994, “Efficient genetic algorithms
for training layered feedforward neural networks.” Information Sciences. 76 :67-85

Co-evolution of cooperative behaviour

 75

Glossary

Chromosome DNA collection of genes that is the encoding the evolutionary
system uses. Defines exactly a corresponding network.

Clones Members of a team whose controllers were generated from the
single common DNA resulting in identical same deterministic
behaviour

Entity An agent controlled by a network defined by a chromosome that acts
in a simulation to define a fitness for the corresponding
chromosome.

Epoch An instance of a single breeding within a population.

Gene Subsection of a chromosome that defines an individual node in the
hidden layer.

Genotype The representation on an individual in terms of a chromosome
structure. This representation includes excessive information stored
in hidden node information that is not exhibited

Individual See entity

Member A single DNA’s association with a specific population or sub-
population. Membership can change across sub-populations due to
migration but not from population to population. Eg A certain DNA
is a member of sub-population 3.

Phenotype The representation of a chromosome in terms of the neural network
it represents. It is the phenotypic representation that is tested for the
allocation of fitness values

Co-evolution of cooperative behaviour

 76

Appendix A: Program Code

Main program

/* sim manager v5.2
 heterogenous popn model for 'follow the leader'

 Matthew Kelcey
 Honours Research Code.
*/

#include "world3.h"
#include "popn.h"
#include <iostream.h> //screen output
#include <fstream.h> //file handling
#include <time.h> //for determining a 'random' seed

//evolution constants
const int numOfGens=200; //#generations for evolution
const int outputFreq=1; //frequency of outputing fitness info to file
//migration specific constants
const int migrationRate=100; //rate which migration occurs,
 //every migrationRate
epoches.

//////////////////
//global variables
int i,j,s,p; //global loop variables
World *earth; //where entities are tested
Popn *leaders,*followers; //populations (including sub popns)

void main(void) {
 //make the world
 earth = new World();

 ////create the initial populations
 //leader popn has 4 sub-populations each with 50 members
 //migration transfers 5 individuals at a time
 int leaderIn = 1+gps;
 int leaderOut = messLength;
 //the square root of the produce of #input and #output
 //nodes is a good starting number to have. *2 since
 //on average only half will be active
 int leaderHidden = (int)(2*sqrt(leaderIn*leaderOut));
 leaders = new Popn(earth,leaderIn,leaderHidden,leaderOut,4,50,5);
 //read in from file a previously evolved population
 //leaders->readFrom("leaders.pop");

 //follower popn has 4 sub-populations each with 100 members
 //migration transfers 10 individuals at a time
 int follIn = 1+gps+messLength;
 int follOut = decisions; //for NSEW
 int follHidden = (int)(2*sqrt(follIn*follOut));
 followers = new Popn(earth,follIn,follHidden,follOut,4,100,10);
 //read in from file a previously evolved population
 //followers->readFrom(follow.pop");

 //randomize function
 srand(455);

 //prepare log files for leader and followers evolved fitness values
 ofstream lFitValues("loutput.txt",ios::out);
 ofstream fFitValues("foutput.txt",ios::out);

 //do the cycle of time
 for (int time=0; time<numOfGens; time++) {
 int sub; //subpopulation loop variable
 cout << time << " of " << numOfGens << " "
 << ((double)time/numOfGens)*100 << "% " << endl;
 //breed leaders

Co-evolution of cooperative behaviour

 77

 for (sub=0; sub<leaders->numSubPopns; sub++) {
 leaders->breedNextGen(sub);
 if (time%outputFreq==0)
 lFitValues << leaders->averageRawFitness(sub) << ","
 << leaders->highestRawFitness(sub)
<< ",";
 }; //sub
 //breed followers
 for (sub=0; sub<followers->numSubPopns; sub++) {
 followers->breedNextGen(sub);
 if (time%outputFreq==0)
 fFitValues << followers->averageRawFitness(sub) <<
","
 << followers-
>highestRawFitness(sub) << ",";
 }; //sub

 //if writing to logfile this epoch need to do endl character now
 if (time%outputFreq==0) {
 lFitValues << endl;
 fFitValues << endl;
 };

 //migrate if its time to do so
 if (time%migrationRate==0) {
 cout << "performing migration" << endl;
 leaders->migrate();
 followers->migrate();
 };
 };

 //if required save these populations to file for recalling later
 //leaders->writeTo("leaders.pop");
 //followers->writeTo("followers.pop");

 // kill populations
 delete leaders;
 delete followers;
};

Co-evolution of cooperative behaviour

 78

World header file

/* WORLD3.H
 world class for simulating in for entity fitness evaluation
 specific for leader and follower problem

 Matthew Kelcey
 Honours Research Code
*/

#ifndef WORLD3_H
#define WORLD3_H

#include "pos.h"
#include "virtudna.h"
#include "entity.h"

//world constants
const int numSimRuns = 5; //#times dna tested per trial (used when there is
 //some undeterministic
element)
const int simLength = 10; //life time of the simulation
const int sizeX = 1; //keep between 0 and 1 to make inputs to networks
const int sizeY = 1; //easy to handle

class World {
public:
 World();
 ~World();

 void display(void); //display all info about all entities

 void addEntity(eEntityType, vDNA*);

 //run the simulation and return an obtained fitness value
 double runSimulation(int, //display moves flag
 int, //display entity info flag
 int); //write to file flag

private:
 //vars
 Entity *pLeader,*pFollower;
 double *worldNoises; //array to hold world noise information
 //dynamic since may
have no elements
 double calculatedFitness;
};

#endif

Co-evolution of cooperative behaviour

 79

World class definition

/* WORLD3.CPP
 adapted from simworld.cpp

 Matthew Kelcey
 Honours Research Code
*/

#include "world3.h"
#include "entity.h"
#include <iostream.h> //for debugging
#include <fstream.h>
#include <string.h>
#include <math.h>
#include <assert.h>

//con and decon
World::World(void) {
 //make and then clear noises array out
 worldNoises = new double[messLength];
 for (int i=0; i<messLength; i++)
 worldNoises[i]=(double)0;

 //allocate space for leader and follower
 pLeader = new Entity();
 pFollower = new Entity();

 //open leaderfile for the first time to flush it
 //prepare file for displaying output of leader
 ofstream leaderOutput;
 leaderOutput.open("leader.txt",ios::out);
 ofstream followerOutput;
 followerOutput.open("follower.txt",ios::out);
}; //world

World::~World(void) {
 //free some memory
 delete [] worldNoises;
 delete pLeader;
 delete pFollower;
}; //~world

void World::display(void) {
 //invoke display on leader and follower
 pLeader->display();
 pFollower->display();

 //wait for user
 cout << "hit an int ";
 int reply; cin >> reply;
}; //display

double doubleAbs(double x) {
 if (x>=0) return x;
 else return -x;
};

void World::addEntity(eEntityType type, vDNA *pDna) {
 if (type==leader)
 pLeader->constructFromDNA(pDna);
 else //type==follower
 pFollower->constructFromDNA(pDna);
};

double World::runSimulation(int fDispMoves,
 int fDispEntInfo,
 int fWriteToFile) {
 /*
 simulation description
 first animate is the leader,
 knows position, hears nothing, doesn't move

Co-evolution of cooperative behaviour

 80

 does broacast though (what should map to its position)
 all other animates
 knows position, hears leaders output
 moves (hopefully towards leader!), doesn't broadcast
 */

 //reset the calculated fitness for this simulation run
 calculatedFitness=0;

 //wish to repeat whole process a number of times to obtain
 //a fairer representation.

 for (int repeat=0; repeat<numSimRuns; repeat++) {
 //position the entities randomly, but equally spaced
 Position lPos, fPos; //l=leader, f=follower
 bool validPositions=false;
 while (!validPositions) {
 //choose leader position as random in sqaure
 lPos.set(randDouble(1),randDouble(1));
 //choose follower position as offset from leader by distance 0.5
 //with stepsize of 0.05 should travel 0.5 in 10 steps
 double angle=randDouble(twoPi);
 fPos.set(lPos.x+0.5*cos(angle),lPos.y+0.5*sin(angle));
 //check if the position of the follower is valid
 if (fPos.x>0 && fPos.x<1 && fPos.y>0 && fPos.y<1)
 validPositions=true;
 }; //while !validPositions
 pLeader ->relocate(lPos,0);
 pFollower->relocate(fPos,0);

 //run the simulation once with these positions
 for (int time=0; time<simLength; time++) {
 //move the entities and check for wall collision
 pLeader->move(leader,worldNoises);
 if (pLeader->loc.x<0) pLeader->loc.x=0;
 if (pLeader->loc.y<0) pLeader->loc.y=0;
 if (pLeader->loc.x>maxX) pLeader->loc.x=maxX;
 if (pLeader->loc.y>maxY) pLeader->loc.y=maxY;
 pFollower->move(follower,worldNoises);
 if (pFollower->loc.x<0) pFollower->loc.x=0;
 if (pFollower->loc.y<0) pFollower->loc.y=0;
 if (pFollower->loc.x>maxX) pFollower->loc.x=maxX;
 if (pFollower->loc.y>maxY) pFollower->loc.y=maxY;
 //update fitness value
 calculatedFitness += pLeader->loc.distTo(pFollower->loc);
 }; //time loop
 }; //repeat loop

 return (double)calculatedFitness/numSimRuns;
}; //runSimulation

Co-evolution of cooperative behaviour

 81

Population header file

/* Popn.h: population class
 includes
 preforming of evolutionary steps
 selection
 crossover, mutation and inversion of dna strings
 fitness scaling

 Matthew Kelcey
 Honours Research Code.
*/

#ifndef POPN_H
#define POPN_H

#include "virtuDNA.h"
#include "world3.h"

//simulation prob chances (values 0-1, 0-never, 0.5 50%, 2-always)
const double introRandom=0.3; //add random member to popn each gen, to replace worst
const double pairwiseElitism=2; //each next gen must beat the value in the slot
const double elitism=2; //highest entity is saved in each
generation

//fitness calculation things
const double scaler=2; //after rescaling fitness,
 //maxFitness =
scaler*averageFitness

class Popn {
public:
 //constructor and destructor
 Popn(World*, //need to know where the population is
 int,int,int, //ins, maxhiddens and outs of popn members
 int,int,int); //numSubPopns, subPopnSize, migrationNumber;
 ~Popn();

 //interface functions
 void display(int); //invoke display on all vDNA members,
 //0=all info,
1=fitness only
 vDNA* fetch(int,int); //return with a ptr to the ith member of
 //the jth subpopn
 vDNA* fetchElite(int); //return the elite of a subpopn
 void breedNextGen(int); //perform breeding on sth subpopulation
 void migrate(void); //migrate individuals cyclically
 vDNA* select(void); //select a member from the whole
population
 void testAllMembers(int); //test all members of a subpopn
 void calcRawFitness (vDNA*);//calculate the fitness of a popn member

 void dispElite(int); //display info on elite member of given subpopn

 double averageRawFitness(int); //int is which sub popn
 double highestRawFitness(int); //int is which sub popn

 //streaming functions (return success or otherwise)
 int writeTo(char*); //write the popn to a file
 int readFrom(char*); //read the popn from a file

 //variables that once were constants
 int subPopnSize;
 int numSubPopns;
 int migrationNumber;

private:
 //popn variables, most dynamically defined once population
 //sizes known gathered constuctor.
 World *pHomePlanet; //where this populatoin is (needed for
testing)
 double **selectArray; //selection arrays for each subpopn
 double *globalSelectArray; //the gloabl selection array

Co-evolution of cooperative behaviour

 82

 int ins,maxHiddens,outs,dnaLength; //dna variables for members in this
population
 int *eliteMember; //array of sub-population elite members
 vDNA ***pDna; //actual members in the population
 vDNA **pTempPopn; //need a temp array for holding nextgen members
 //and for usage in migration

int fNeedGlobalRecalc; //flag to indicate that a subpopn has changed its
 //selection array and so
global array must be updated

 //private functions needed to be called only by member functions.
 vDNA* select(int); //select a member from
subpopulation s
 void calcFitnessStats(Fitness,int); //determine elite member for subpopn
 void prepareSelectionArray(int); //needed for selection of members for a
subpopn
};

#endif

Co-evolution of cooperative behaviour

 83

Population class definition

/* popn.cpp: implementation of the popn class.

 Matthew Kelcey
 Honours Research Code
*/

#include "popn.h"
#include <iostream.h>
#include <fstream.h>
#include <assert.h>

void Popn::dispElite(int i) {
 pDna[i][eliteMember[i]]->display(0);
};

/*procedure for activation of a flag
 chance=0 => always returns 0
 chance=0.5 => returns 1 50% of the time
 chance=2 => always returns 1 */
inline int active(double chance) {
 return (randDouble(1)<chance);
};

//return the average raw fitness of a specified sub population
double Popn::averageRawFitness(int ws) {
 double total=0;
 for (int p=0; p<subPopnSize; p++)
 total+=pDna[ws][p]->fitness[raw];
 return total/subPopnSize;
};

//return the highest raw fitness of a specified sub population
double Popn::highestRawFitness(int ws) {
 int highest=0;
 double highestRF=pDna[ws][0]->fitness[raw];
 for (int p=1; p<subPopnSize; p++)
 if (pDna[ws][p]->fitness[raw] > highestRF) {
 highest=p;
 highestRF=pDna[ws][p]->fitness[raw];
 };
 return highestRF;
};

//display the details of the DNA strings in the population
void Popn::display(int disp) { //0=all info , 1=fitness values only
 int s,p;
 for (s=0; s<numSubPopns; s++) {
 cout << "***" << s << "th subpopn" << endl;
 for (p=0; p<subPopnSize; p++) {
 cout << "member " << p << " of subpop " << s << endl;
 pDna[s][p]->display(disp);
 };
 };

 //heres the selection arrays
 cout << "and the selection arrays are " << endl;
 for (s=0; s<numSubPopns; s++) {
 for (p=0; p<subPopnSize; p++)
 cout << selectArray[s][p] << ",";
 cout << endl;
 };
};

//population constructor
Popn::Popn(World *pWhichWorld, int ins_, int maxHiddens_, int outs_,
 int numSub, int subSize, int migrationNumber) {
 int s,p; //loop variables

 //keep relevant values
 ins = ins_;
 maxHiddens = maxHiddens_;
 outs = outs_;

Co-evolution of cooperative behaviour

 84

 numSubPopns = numSub;
 subPopnSize = subSize;
 pHomePlanet = pWhichWorld;
 //dna length used so often store it also
 dnaLength = (1+ins+outs)*maxHiddens;

 //construct the dynamic arrays needed for population management
 //allocate space for elite member array
 eliteMember = new int[numSubPopns];
 //allocate space for select array
 selectArray = new double*[numSubPopns];
 for (s=0; s<numSubPopns; s++)
 selectArray[s] = new double[subPopnSize];
 //allocate space for global selection array
 globalSelectArray = new double[subPopnSize*numSubPopns];
 //allocate space for population dna pointers
 pDna = new vDNA**[numSubPopns];
 for (s=0; s<numSubPopns; s++)
 pDna[s] = new vDNA*[subPopnSize];
 //allocate space for temporary sub population
 pTempPopn = new vDNA*[subPopnSize];

 //create the individual members
 for (p=0; p<subPopnSize; p++) {
 pTempPopn[p] = new vDNA(ins,maxHiddens,outs);
 for (s=0; s<numSubPopns; s++)
 pDna[s][p] = new vDNA(ins,maxHiddens,outs);
 };

 //test members of each subpopn to obtain initial fitness values
 for (s=0; s<numSubPopns; s++)
 testAllMembers(s);
}; //con

//destructor, need to free up heaps of dynamically defined memory
Popn::~Popn() {
 int p,s; //loop variables

 //kill all the members
 for (p=0; p<subPopnSize; p++) {
 delete pTempPopn[p];
 for (s=0; s<numSubPopns; s++)
 delete pDna[s][p];
 };

 //remove all space reserved for dynamic arrays
 delete [] eliteMember;
 delete [] globalSelectArray;
 delete [] pTempPopn;
 for (s=0; s<numSubPopns; s++) {
 delete [] selectArray[s];
 delete [] pDna[s];
 }; //s
}; //destr

//select a member from subpopulation s
//if offset is nonzero then use this value instead of a random value
//more intelligent selection rountine. O(n) for whole population selection
vDNA* Popn::select(int whichSpecies) { //s
 //choose the random position
 double pos=randDouble(selectArray[whichSpecies][subPopnSize-1]);

 //check for boundary cases,
 //also ensures s[0] < p < s[n-2]
 if (pos<=selectArray[whichSpecies][0])
 return pDna[whichSpecies][0]; //the first member
 if (pos>=selectArray[whichSpecies][subPopnSize-2])
 return pDna[whichSpecies][subPopnSize-1]; //the last member

 //make the inital guess at position, = position/average
 int guess=(int)(pos/(selectArray[whichSpecies][subPopnSize-1]

 /subPopnSize));

 //move until its found
 while (1) {

Co-evolution of cooperative behaviour

 85

 //check if the guess is now correct
 if ((pos>selectArray[whichSpecies][guess-1])
 && (pos<=selectArray[whichSpecies][guess]))
 return pDna[whichSpecies][guess]; //found it!
 //otherwise try guesing one way or the other
 if (pos>selectArray[whichSpecies][guess])
 guess++; //move to right one place
 else
 guess--; //move to left one place
 }; //while
};

/*/naive selection rountine, O(n*n) for whole population selection
int oldRouletteSelect(double total, int whichSpecies) {
 int which=0;
 double where=randDouble(total);
 while ((where>=pDna[which][whichSpecies]->fitness[scaled])
 && (which<subPopnSize-1))
 where-=pDna[which++][whichSpecies]->fitness[scaled];
 return which;
}; //nothing
*/

//select used outside the class by others
//returns a random member from the entire population
vDNA* Popn::select(void) {
 ////simple naive approach
 return select(randInt(numSubPopns));
};

//migrate starting at a random point.
//(do modulo subPopnSize) to treat cyclically.
void Popn::migrate(void) {
 int i,j; //loop variables
 int lower; //lower bound of migration range.

 //choose lower bound;
 lower = randInt(subPopnSize);

 //remember the zeroth popn in a temp array
 for (j=lower; j<lower+migrationNumber; j++)
 pDna[0][j%subPopnSize]->copyInto(pTempPopn[j%subPopnSize]);

 //create temporary popn for moving groups
 //starting from 2nd popn (popn group 1)
 for (i=1; i<numSubPopns; i++)
 //move the ith popn into the i-1th population
 for (j=lower; j<lower+migrationNumber; j++)
 pDna[i][j%subPopnSize]->copyInto(pDna[i-1][j%subPopnSize]);

 //move the zeroth group into the 'numSpecies'th popn
 for (j=lower; j<lower+migrationNumber; j++)
 pTempPopn[j%subPopnSize]->
 copyInto(pDna[numSubPopns-1][j%subPopnSize]);

 //since members have been moved need to reevaluate
 //the selection array after rescaling the fitness
 //values for each subpopn
 for (int s=0; s<numSubPopns; s++)
 prepareSelectionArray(s);
};

void Popn::calcRawFitness(vDNA *testee, eEntityType leaderOrFollower) {

 //testee->fitness[raw]=(float)0;

 // RUN SIMULATION
 if (testee->numHiddens()==0) //invalid network
 testee->fitness[raw]=0;
 else { //valid network with one or more hidden nodes
 //clear current fitness value
 testee -> fitness[raw] = (float)0;
 //add the testee as a leader or follower
 pHomePlanet->addEntity(leaderOrFollower,testee)
 //run the simulation a number of times,
 //each time with a new patner
 for (sim=0; sim<numSimRuns; sim++) {

Co-evolution of cooperative behaviour

 86

 if (leaderOrFollower==leader)
 pHomePlanet->addEntity(follower, some other member);
 else
 pHomePlanet->addEntity(leader, some other member);
 //award all fitness to the testee
 testee -> fitness[raw] += pHomePlanet->runSimulation(0,0,0);
 }; //for sim
 //average fitness value
 testee -> fitness[raw] /= (double)numSimRuns;
 }; //else
 //*/

 /*/TRIVIAL TEST OF ONE INPUT
 //MUST HAVE 4inputs AND 3outputs
 Network *brain = new Network(testee);
 double inputs[4] = {1,0.2,0.3,-0.3};
 double trueValues[3] = {0.5,-0.3,0.4};
 testee->fitness[raw] = brain->errorMagnitude(inputs,trueValues);
 delete brain;
 //*/

 /*/TEST BY ABILITY TO COPY INPUT STRING ON OUTPUT
 testee->fitness[raw]=(float)0;
 //make controller
 Network *brain = new Network(testee);
 //create arrays for testing
 double *inputs = new double[testee->ins];
 double *trueValues = new double[testee->outs];
 inputs[0]=1; //for bias terms
 //test simLength times
 for (int t=0; t<simLength; t++) {
 //create some random inputs
 for (int i=1; i<ins; i++) {
 inputs[i]=negPos();
 trueValues[i-1]=inputs[i];
 };
 //find errorMagnitude on these inputs
 testee->fitness[raw]+=brain->errorMagnitude(inputs,trueValues);
 };
 //invert fitness values (we want low errors to mean high fitness)
 testee->fitness[raw]=1/testee->fitness[raw];
 //free memory
 delete brain;
 delete [] inputs;
 delete [] trueValues;
 //*/

 /*/TEST BY ALLOCATING FITNESS AS SUM OF DNA STRING VALUES
 testee->fitness[raw]=(float)0;
 for (int i=0; i<dnaLength; i++)
 testee->fitness[raw]+=testee->piece[i];
 //*/

 /*/TEST ON TIME SERIES ERROR MAGNITUDE
 //reset old fitness value
 testee->fitness[raw]=(float)0;
 //make controller from dna
 Network *controller = new Network(testee);
 //test on simple time series
 for (int i=0; i<seriesLength; i++)
 controller->addToRaw(controller
 ->errorMagnitude(seriesInputs[i],seriesTrueValues[i]));
 //we require small fitness values indicate a fit individual
 testee->fitness[raw]=1/testee->fitness[raw];
 cout << "fitness is " << testee->fitness[raw] << endl;
 //free some memory
 delete controller;
 //*/
};

//first thing to do when all have been created
void Popn::testAllMembers(int ws) {
 cout << "testing all members of subpopn " << ws << endl;
 for (int s=0; s<numSubPopns; s++)
 for (int p=0; p<subPopnSize; p++)
 calcRawFitness(pDna[s][p]);

Co-evolution of cooperative behaviour

 87

 //prep selection array (including conversion from
 //raw->scaled fitness values
 prepareSelectionArray(ws);
};

//need to ensure raw fitness values have been rescaled to scaled values
void Popn::prepareSelectionArray(int ws) {
 int p;
 ////first need to convert raw values to scaled values

 //need to check all values are non-negative
 //if some are not rescale on the most negative value while
 //retaining the correct level of proportionality
 double mostNegative=0; //set to zero value to check against
 for (p=0; p<subPopnSize; p++) {
 if (pDna[ws][p]->fitness[raw]<mostNegative)
 mostNegative=pDna[ws][p]->fitness[raw];
 //cout << "mn" << mostNegative << " ";
 }; //p
 if (mostNegative!=0) //ie value was set previously
 for (p=0; p<subPopnSize; p++)
 pDna[ws][p]->fitness[raw] -= mostNegative;

 //find the average and highest value
 double highestF = pDna[0][ws]->fitness[raw];
 double totalF = highestF; //ie just first value
 double averageF;
 eliteMember[ws]=0;

 //go through rest of the popn and get actual
 //average and highest raw values
 for (p=1; p<subPopnSize; p++) {
 totalF += pDna[ws][p]->fitness[raw];
 //check if this ones the elite member
 if (pDna[ws][p]->fitness[raw] > highestF) {
 highestF = pDna[ws][p]->fitness[raw];
 eliteMember[ws]=p;
 };
 };
 //obtain average from total
 averageF = (double)totalF/subPopnSize;

 //calculate constants
 double slope=(scaler-1)*averageF/(highestF-averageF);
 double constant=averageF*(highestF-scaler*averageF)
 /(highestF-
averageF);
 //need to keep tabs on negative values
 //if any exist then shift all so all non-negative
 double lowestNegValue=0;
 //rescale all other values using constants
 //checking for negative values
 for (p=0; p<subPopnSize; p++) {
 pDna[ws][p]->fitness[scaled] =
 slope*pDna[ws][p]->fitness[raw]+constant;
 //make sure none are negative due to scaling, otherwise
 //roulette will fail
 if (pDna[ws][p]->fitness[scaled]<0)
 if (pDna[ws][p]->fitness[scaled]<lowestNegValue)
 lowestNegValue=pDna[ws][p]->fitness[scaled];
 }; //for

 //if there are negatives then shift all values
 //to make the most negative zero
 if (lowestNegValue!=0) //ie it has changed, by being set above
 for (p=0; p<subPopnSize; p++)
 pDna[ws][p]->fitness[scaled] -= lowestNegValue;
 //note: even after rescaling the elite member will stay the same

 //////then create actual selection array
 //set first member to be first fitness value
 selectArray[ws][0] = pDna[ws][0]->fitness[scaled];
 //allocate following ones as the sums
 for (int i=1; i<subPopnSize; i++)
 selectArray[ws][i] = selectArray[ws][i-1] +

Co-evolution of cooperative behaviour

 88

 pDna[ws][i]-
>fitness[scaled];

 //since this selection array has changed will
 //need to recalc the global selection array
 fNeedGlobalRecalc=1;
};

vDNA* Popn::fetch(int whichSpecies, int whichMember) {
 return pDna[whichSpecies][whichMember];
};
vDNA* Popn::fetchElite(int whichSpecies) {
 return pDna[whichSpecies][eliteMember[whichSpecies]];
};

//perform breeding on sth subpopulation
void Popn::breedNextGen(int ws) {
 vDNA *parent;
 int p; //loop iter
 int startFrom=0; //will start here if elite selection happens

 //do elite member automatic inclusion
 if (active(elitism)) {
 pDna[ws][eliteMember[ws]]->copyInto(pTempPopn[0]);
 startFrom=1; //don't want to copy over the new elite member
 };

 //do the actual breeding of each member
 for (p=startFrom; p<subPopnSize; p++) {
 //select a parent member
 parent = select(ws);
 //copy it to the next gen
 parent->copyInto(pTempPopn[p]);

 //test for crossover & mutation
 int fChanged=false; //need to keep since
 //may need to reevaluate fitness
 if (active(crossOverRate)) {
 //crossover of parent and another selected parent
 pTempPopn[p]->crossOver(parent,select(ws),2);
 fChanged=true;
 };
 if (active(mutationRate)) {
 pTempPopn[p]->mutate();
 fChanged=true;
 };
 if (active(inversionRate)) {
 pTempPopn[p]->inversion();
 fChanged=true;
 };

 //if its changed then reevaluate its fitness
 if (fChanged)
 calcRawFitness(pTempPopn[p]);

 //do pairwise elitism tests
 if (fChanged &&
 active(pairwiseElitism) &&
 (pTempPopn[p]->fitness[raw] < parent->fitness[raw]))
 //replace old parent in this slot
 parent->copyInto(pTempPopn[p]);
 };

 //perform new random member inclusion to overwrite worse member
 if (active(introRandom)) {
 //find the worst member
 int worst = 0; //for now
 double worstFitness = pTempPopn[0]->fitness[raw];
 for (p=1; p<subPopnSize; p++)
 if (pTempPopn[p]->fitness[raw] < worstFitness) {
 worst = p;
 worstFitness = pTempPopn[p]->fitness[raw];
 };//if
 //replace it with a new random dna
 pTempPopn[worst]->randomizeValues();

Co-evolution of cooperative behaviour

 89

 //evaluate this new members fitness
 calcRawFitness(pTempPopn[worst]);
 };

 //copy next gen back to breeding pool
 for (p=0; p<subPopnSize; p++)
 pTempPopn[p]->copyInto(pDna[ws][p]);

 //rescale fitness values and construct new selection array
 prepareSelectionArray(ws);

 //so at end of breeding epoch the selection array
 //should be up to date (for use by other populations
 //when asking to choose a new member)
};

//streaming
int Popn::writeTo(char *fileName) {
 //open the file for writing
 ofstream output(fileName,ios::out);
 if (!output) {
 cout << "error opening " << fileName << " for writing" << endl;
 return 0;
 };
 //write some general popn info (used for checking)
 output << numSubPopns << " " << subPopnSize
 << " " << dnaLength << " ";
 //write all the members data out
 for (int s=0; s<numSubPopns; s++)
 for (int p=0; p<subPopnSize; p++) {
 for (int l=0; l<dnaLength; l++)
 output << pDna[s][p]->piece[l]<< " ";
 output << pDna[s][p]->fitness[0] << " ";
 output << pDna[s][p]->fitness[1] << " ";
 };
 output << endl;
 //if this far then success
 return 1;
};

int Popn::readFrom(char *fileName) {
 //open the file for reading
 ifstream input(fileName,ios::in);
 if (!input) {
 cout << "error opening " << fileName << " for reading" << endl;
 return 0;
 };
 //read in general popn info
 int subpop,popsize,dnalen;
 input >> subpop >> popsize >> dnalen;
 //compare against runtime constants
 if ((subpop!=numSubPopns)||(popsize!=subPopnSize)
 ||(dnaLength!=dnalen)) {
 cout << "error in file, differing constants" << endl;
 cout << "numSubPopns :" << subpop
 << " should be " << numSubPopns << endl;
 cout << "subPopnSize :" << popsize
 << " should be " << subPopnSize << endl;
 cout << "dna length :" << dnalen
 << " should be " << dnaLength << endl;
 return 0;
 };

 //read all the info in
 for (int s=0; s<numSubPopns; s++)
 for (int p=0; p<subPopnSize; p++) {
 for (int l=0; l<dnaLength; l++)
 input >> pDna[s][p]->piece[l];
 input >> pDna[s][p]->fitness[0];
 input >> pDna[s][p]->fitness[1];
 };

 //recreate the selection arrays
 for (s=0; s<numSubPopns; s++)
 prepareSelectionArray(s);

 //if this far then success

Co-evolution of cooperative behaviour

 90

 return 1;
};

Co-evolution of cooperative behaviour

 91

Virtual DNA header file

/* VIRTUDNA.H
 by Matthew Kelcey
 Honours Research Code.
*/

#ifndef VIRTUDNA_H
#define VIRTUDNA_H

#include <stdlib.h> //for random
#include <math.h> //for sqrt

//dna length flags
const int numEyes = 0; // number of eyes, 0=no eyes
const int numColourComps = 3; // number of colour componentes, RGB
const int gps = 2; // 2=xy coords, 0=no gps
const int messLength = 2; // length of output consider to be the
 // message, 0=>no hearing
const int decisions = 4; // 4=>nsew, 3=>lrs

////breeding constants
//chance of mutation
const float mutationRate = (float)0.01;
//relative odds of swapping node active
const int mutateActive = 1;
//relative odds of changing a weight (includes bias terms)
const int mutateWeight = 4;
//this is the prob of a new value opposed to
//gaussian changing given a mutation is occuring
const float newValueOrGauss = (float)0.2;

//chance of crossover
const float crossOverRate = (float)0.8;
//rel. odds of crossover point on active position
const int xOverNodes = 3;
//rel. odds of crossover point on first outgoing weight
const int xOverInsOuts = 2;
//rel. oods of crossover point anywhere (could be one of the above though)
const int xOverAnywhere = 1;

//chance of inversion
//acts only on genes
const float inversionRate = (float)0.001;

//to return a random float between -1 & 1
inline double negPos(void) {
 return ((double)rand())/RAND_MAX*2-1;
};

//return a random number between 0 and max (as a double)
inline double randDouble(double max) {
 return (double)(rand()*max/RAND_MAX);
};

//return an int from 0->max-1
inline int randInt(int max) {
 return rand()%max;
};

enum Fitness {raw, scaled};

class vDNA {
public:
 //return how many hidden nodes this dna represents
 int numHiddens(void);
 //set all pieces to random values
 void randomizeValues(void);
 //defaultconstructor, dna sizes defined by constants
 vDNA(int,int,int); //ins, maxHiddens, outs
 //default decon.
 ~vDNA();
 //copy con
 vDNA(vDNA&);

Co-evolution of cooperative behaviour

 92

 //debugging displayer ints are inputs and outputs (for formatting)
 void display(int); //0=all, 1=just fitness values
 //copier, why doesn't copycon work?
 void copyInto(vDNA*);
 //mutate the dna
 int mutate(void);
 //crossover things
 int newCrossOverPoint(); //give a new crossover point
 int crossOver(vDNA*, //other parent
 vDNA*, //child
 int); //number of crossover points
 //inversion functions
 void swap(int,int); //swap two genes in strand
 void inversion(void);

 //variables
 double *piece; //actual weights array
 double fitness[2]; //two fitness values, raw and scaled
 int mutateTotal;//= mutateActive+(geneLength-1)*mutateWeight;
 int xTotal;// = xOverNodes+xOverInsOuts+geneLength*xOverAnywhere;
 int ins,maxHiddens,outs;
 int geneLength,length;
};

#endif

Co-evolution of cooperative behaviour

 93

Virtual DNA class definition

/* VIRTUDNA.CPP
 by Matthew Kelcey
 Honours Research Code.
*/

#include "virtudna.h"
#include <iostream.h> //for debugging
#include "math.h"

//need this since the 'log' in gaussian dies when it gets a zero
inline double spRand(void) {
 double temp=randDouble((double)1);
 if (temp!=0)
 return temp;
 else
 return 0.000001;
};
inline double newGaussian(double mean, float stdDev) {
 return sqrt(-2.0 * log(spRand()))
 *cos(randDouble((double)6.2831853072))
 *stdDev+mean;
};

//return the number of hidden nodes this dna would have active
int vDNA::numHiddens(void) {
 int numHiddens=0;
 for(int i=0; i<length; i+=geneLength)
 //check active positions
 numHiddens += (piece[i]>0);
 return numHiddens;
};

//nuke to randomise all values
void vDNA::randomizeValues(void) {
 //put random values in dna
 for (int i=0; i<length; i++)
 piece[i] = (float)(negPos()/2);
 //zero fitness values
 fitness[0] = fitness[1] = (float)0;
};

//constructor
vDNA::vDNA(int ins_, int maxHiddens_, int outs_) {
 //remember constants
 ins=ins_;
 maxHiddens=maxHiddens_;
 outs=outs_;
 //work out a few values accessed often to optimise time
 geneLength = ins+outs+1;
 length = geneLength*maxHiddens;
 mutateTotal = mutateActive+(geneLength-1)*mutateWeight;
 xTotal = xOverNodes+xOverInsOuts+geneLength*xOverAnywhere;
 //declare piece array and initialise it
 piece = new double[length];
 randomizeValues();
};

//decon
vDNA::~vDNA() {
 //only need to deallocate space for piece array
 delete [] piece;
};

//copy functions
vDNA::vDNA(vDNA ©) {
 //directly copy everything across
 for (int i=0; i<length; i++)
 piece[i] = copy.piece[i];
 fitness[0]=copy.fitness[0];
 fitness[1]=copy.fitness[1];
};

Co-evolution of cooperative behaviour

 94

void vDNA::copyInto(vDNA *pDestDna) {
 for (int i=0; i<length; i++)
 pDestDna->piece[i]=piece[i];
 pDestDna->fitness[0]=fitness[0];
 pDestDna->fitness[1]=fitness[1];
}; //copyInto

//mutation
int vDNA::mutate(void) {
 //decide which gene to mutate
 int gene = randInt(maxHiddens)*geneLength;

 //decide which part of that gene to mutate and thus the offset
 int offset;
 int part = randInt(mutateTotal);
 if (part<mutateActive)
 //mutate active position
 offset=0;
 else //mutating a weight value
 offset=1+randInt(ins+outs);

 //decide on mutation type
 if (randDouble((double)1)<newValueOrGauss)
 { //use gaussian mutation
 float stdDev=(float)0.1;
 //then actually mutate
 piece[gene+offset]=
 (double)newGaussian(piece[gene+offset],stdDev);
 }
 else //whole new value
 piece[gene+offset]=(double)negPos();

 //must return success, useful having return for testing
 //mutation by returning mutation position when needed
 return 1;
}; //mutate

//crossover things
int vDNA::newCrossOverPoint(void) {
 //choose which node to have crossover point on
 int position = randInt(maxHiddens)*geneLength;
 //decide where on that node it's going to be
 int where = randInt(xTotal);
 if (where<xOverNodes)
 //crossover at active position
 return position;
 if (where<xOverNodes+xOverInsOuts)
 //crossover at first outgoing weight
 return position+ins+1;
 //crossover anywhere
 return position+randInt(geneLength);
}; //newCrossOverPoint

//breed based on crossover, int is number of crossover points
int vDNA::crossOver(vDNA *parentA, vDNA *parentB, int numPoints) {
 //make sure not too many crossover points!
 if (numPoints>=length)
 numPoints=length-1;

 //work out distinct crossover points
 int *crossOver = new int[numPoints]; //array for crossover points
 crossOver[0] = randInt(length);
 int which=1; //which crossover point we are deciding
 while (which!=numPoints) {
 //give a random value
 crossOver[which] = newCrossOverPoint();
 //check if it's distinct from previous ones
 int sameAs=false; //assume not same as any other
 //yet and show otherwise
 for (int j=0; j<which; j++)
 if (crossOver[which]==crossOver[j])
 sameAs=true;
 //if its not the same go to chossing next one
 if (!sameAs)
 which++;
 };

Co-evolution of cooperative behaviour

 95

 //define pChilds arrays
 int parentAToChild = 1; //ie parentA giving gene to pChild A
 for (int i=0; i<length; i++) {
 //is this a crossover point? compare against all crossovers
 int test=0;
 while (test<numPoints) {
 if (i==crossOver[test]) {
 //swap which parent coming from
 parentAToChild = !parentAToChild;
 test=numPoints;
 };
 test++;
 };

 //transfer actual dna strand information
 if (parentAToChild)
 piece[i] = parentA->piece[i];
 else //!parentAToChildA
 piece[i] = parentB->piece[i];
 }; //for

 //free memory
 delete [] crossOver;
 //came out ok
 return 1;
};

//inversion things
//swap two genes, used during inversion
void vDNA::swap(int a,int b) {
 int i; //loop iterator
 double *temp=new double [geneLength]; //for temp storage
 //store gene 'a' temporarily
 for (i=0; i<geneLength; i++)
 temp[i]=piece[a*geneLength+i];
 //copy gene 'b' into gene 'a'
 for (i=0; i<geneLength; i++)
 piece[a*geneLength+i]=piece[b*geneLength+i];
 //copy temp stored gene into gene 'b'
 for (i=0; i<geneLength; i++)
 piece[b*geneLength+i]=temp[i];
 //free memory
 delete [] temp;
}; //swap

//cyclic inversion
void vDNA::inversion(void) {
 //pick distinct inversion positions
 int pt1=randInt(maxHiddens);
 int pt2=pt1; //set equal to force following loop at least once
 while (pt1==pt2)
 pt2=randInt(maxHiddens);
 //do actual inversion between pt1 & pt2
 while (pt1!=pt2) {
 //do one positions swap
 swap(pt1,pt2);
 //check to see if done by pts being within one of each other
 //either nornally, or in the boundary case
 if ((pt2-pt1==1)||(pt1-pt2==maxHiddens-1)) {
 //force finish of loop
 pt1=pt2;
 } //if
 else {
 //not finished so move points closer, modulo maxHiddens
 pt1++; if (pt1==maxHiddens) pt1=0;
 pt2--; if (pt2<0) pt2=maxHiddens-1;
 }; //else
 }; //while
}; //inversion

//for debuggging
void vDNA::display(int w) { //w=0, display all, w=1 display only fitness values
 if (w!=1)
 for (int i=0; i<length; i++) {
 cout << piece[i] << " ";
 if ((i+1)%geneLength==0) cout << endl;
 };

Co-evolution of cooperative behaviour

 96

 cout << "rawFit=" << fitness[0] << " scaledFit=" << fitness[1] << " ";
 cout << "numHiddens=" << numHiddens() << endl;

 int y; cin >> y;
}; //display

Co-evolution of cooperative behaviour

 97

Position header and class definitions

/* POS.H
 data structure and procedures for 2d distances
 Matthew Kelcey
 Honours Research Code
*/

#ifndef POS_H
#define POS_H

#include <math.h> //for sqrt
#include <iostream.h>

class Position {
 friend ostream &operator<<(ostream &output, const Position &loc) {
 cout << "(" << loc.x << "," << loc.y << ")";
 return output;
 };
public:
 Position() { x=y=(double)0; };
 Position(double nx, double ny) { x=nx; y=ny; };
 inline double distTo(Position other) {
 return sqrt((x-other.x)*(x-other.x)+(y-other.y)*(y-other.y));
 };
 void set(double nx, double ny) { x=nx; y=ny; };
 double x,y;
};

#endif

Co-evolution of cooperative behaviour

 98

Entity header file

/* ENTITY.H
 structure for holding information about each entity
 by Matthew Kelcey
 Honours Research Code.
*/

#ifndef ENTITY_H
#define ENTITY_H

#include "virtuDNA.h"
#include "neural2.h"
#include "pos.h"
#include "colour.h"

const double turnAngle = 0.1; //radians
const double stepSize = 0.05; //size of world is 0->1
 //(easier for scaling purposes)
//entity vision constants
const double pi = 3.14159265358;
const double twoPi=pi*2;
const double fieldOfView = (double)pi/2;//90deg
const double gamma = 0.5; //1=normal brightness, <1 more, >1 less.
const int fTracking = 1; //write vision to output vision.txt

enum eDisplay {locationInfo,visionInfo}; //for displaying entity values
enum eEntityType {leader, follower};

/**

grid is laid out as....

 0,0 maxX,0 l = acw
 r = ccw
 pi/2
 pi 0 have to show eyes in reverse order.
 3pi/2

 0,maxY maxX,maxY

 **/

class Entity {
public:
 //construct with null values
 Entity();
 //default decon
 ~Entity();
 //default entity from dna
 void constructFromDNA(vDNA*);
 //init all values
 void init(void);

 //snapshot vision
 void snapShotVision(Entity*); //give last entity in list
 //listen for sounds
 void listen(double[]); //noises from world

 //calculate the sweep angle to another position
 double sweepAngleTo(Position);
 //get entity to think, then move, then return the 'move'
 // eg 'n' (north) or 'l' (left) for possible displaying
 char move(eEntityType, //denote whether leader or not
 double[]); //world noise array for passing messages
 //display info on entity
 void display(void); //display all information
 void display(eDisplay); //location=all location spec variables

 //vision=just the vision

 //put entity to a new location and give direction
 void relocate(Position,double);

Co-evolution of cooperative behaviour

 99

 //change an entities colour
 void changeColour(Colour);
 //reset the raw fitness value
 void resetFitness(void);

 //entity variables
 //eEntityType type; //entity is animate or inanimate
 Network *pController; //controller
 Entity *pNextEntity; //used when applying vision calcs
 Position loc; //location
 double direction; //direction facing
 Colour looks; //colour of the entity
 vDNA *pSourceDna; //need this pointer to allocate fitness
 //the following 3 are dynamically defined (since inanimates dont use them)
 Colour *vision; //what the entity can see
 //these two are dynamic since messLength may =0
 double *hearing; //what the entity hears
 double *voice; //what the entity says
};
#endif

Co-evolution of cooperative behaviour

 100

Entity class definition

/* ENTITY.CPP
 class defn for entities
 last modified 4/5 for initial writing
*/

#include "entity.h"
#include "fstream.h"
#include <assert.h>
#include <math.h> //for sin & cos
#include <iostream.h> //for debugging info

void Entity::display(eDisplay locOrVision) {
 if (locOrVision==locationInfo) {
 cout << "entity is ";
 if (pController==NULL) cout << "in";
 cout << "animate @" << loc
 << " f:" << (double)direction
 << " colour is " << looks << endl;
 }
 else {//do vision
 cout << "can see ";
 for (int i=numEyes-1; i>-1; i--)
 cout << i << ":" << vision[i] << " ";
 if (numEyes==0)
 cout << "nothing, this entity is blind";
 cout << endl;

 //do hearing
 cout << "can hear ";
 for (i=0; i<messLength; i++)
 cout << i << ":" << hearing[i] << " ";
 if (messLength==0)
 cout << "nothing, this entity is deaf";
 cout << endl;
 }; //vision and hearing
};

void Entity::display(void) {
 display(locationInfo);
 //dont bother with displaying vision for inanimates
 if (pController!=NULL) {
 display(visionInfo);
 cout << "controller is " << pSourceDna->ins << "x"
 << pSourceDna->numHiddens() << "("
 << pSourceDna->maxHiddens << ")x"
 << pSourceDna->outs << endl;
 };
};

void Entity::init(void) {
 loc.set(0,0); direction=0;
 looks.set(0,0,0); int i;
 //construct vision array for the entity
 if (numEyes!=0)
 vision = new Colour[numEyes];
 //make it see nothing
 if (numEyes!=0)
 for (i=0; i<numEyes; i++)
 vision[i].reset();
 //construct hearing array
 if (messLength!=0) {
 hearing = new double[messLength];
 voice = new double[messLength];
 }; //if
 //make it hear nothing
 if (messLength!=0)
 for (i=0; i<messLength; i++)
 hearing[i]=(double)0;
 //not using vision for dont bother maintaining list
 pNextEntity==NULL;
};

Co-evolution of cooperative behaviour

 101

Entity::Entity(void) {
 //no controller for this entity yet
 pController = new Network();
 //no source dna yet either
 pSourceDna = NULL;
 //reset other values
 init();
};

void Entity::constructFromDNA(vDNA *pDna) {
 //make a controller from this dna
 pController = new Network(pDna);
 //remember where this dna came from
 pSourceDna=pDna;
 //ensure other values have been reset
 init();
};

Entity::~Entity() {
 //free up reserved memory space
 delete pController;
 //free vision array
 if (numEyes!=0)
 delete [] vision;
 //and hearing array
 if (messLength!=0) {
 delete [] hearing;
 delete [] voice;
 };
};

//sweep angle function used in a few other places also`
double Entity::sweepAngleTo(Position otherLoc) {

 //store the relevant variables
 double x1=loc.x;
 double y1=loc.y;
 double x2=otherLoc.x;
 double y2=otherLoc.y;

 //work out angle from axis between point 1 and 2
 double tAngle;
 //check for div by zero error
 if (x2==x1)
 if (y2<y1) tAngle = -(double)pi/2;
 else tAngle = (double)pi/2;
 else
 tAngle = atan((double)(y2-y1)/(x2-x1));
 //quadrant 2 & 3
 if (x2<x1) tAngle+=pi;
 //quadrant 4
 if (tAngle<0) tAngle+=twoPi;

 //work out relative sweep angle
 tAngle-=direction;
 if (tAngle<0) tAngle+=twoPi;
 if (tAngle>twoPi) tAngle-=twoPi;

 return tAngle;
};

void Entity::snapShotVision(Entity *pCompareEntity) { //pIter==pFirstEntity[inanimate]
 //some needed variables
 double halfFOV = (double)fieldOfView/2;
 //RE int numInVision[numEyes]; //number entities in each view
 int fFinished=false; //flag to decide when finished

 //clear out num in vision array and clear vision
 for (int i=0; i<numEyes; i++) {
 //RE numInVision[i]=0;
 vision[i].reset();
 };

 //compare with other entities in the entity list
 while (!fFinished) {
 //dont want to look at self
 if (pCompareEntity!=this){

Co-evolution of cooperative behaviour

 102

 //calculate the sweep angle to this entity we are comparing
 double angle=sweepAngleTo(pCompareEntity->loc);

 //check if its in the field of view
 if (angle<halfFOV || angle>twoPi-halfFOV) {
 //in view, but which eye?
 //scale to -halfFOV -> halfFOV
 if (angle>pi) angle-=twoPi;
 //scale to 0->FOV (halfFOV-angle that is)
 angle+=halfFOV;

 //work out which eye its in then
 int whichEye=(int)(angle/(double)(fieldOfView/numEyes));

 //calc distance to the comparing entity
 double dist = loc.distTo(pCompareEntity->loc) * gamma;

 //add that sight to correct eye
 vision[whichEye].red
 +=(double)pCompareEntity->looks.red / dist;
 vision[whichEye].green
 +=(double)pCompareEntity->looks.green / dist;
 vision[whichEye].blue
 +=(double)pCompareEntity->looks.blue / dist;
 //keep record of how many in this view
 //RE numInVision[whichEye]++;
 } //if in view
 }; //if not looking at self

 //even newer version for just the one list
 if (pCompareEntity->pNextEntity!=NULL)
 pCompareEntity = pCompareEntity->pNextEntity;
 else
 fFinished=true;
 }; //while not finished flag loop

 //get ready to append if needed
 ofstream visionFile ("vision.txt",ios::app);

 if (fTracking)
 visionFile << numEyes << " " << endl;

 //average out vision values and put result in entity storage
 for (i=0; i<numEyes; i++)
 //average out what was seen in each eye
 if (numInVision[i]!=0) {
 vision[i].red /=(double)numInVision[i];
 vision[i].green /=(double)numInVision[i];
 vision[i].blue /=(double)numInVision[i];
 };

 //if tracking then send to file vision.txt
 if (fTracking)
 visionFile << vision[i].red << " "
 << vision[i].green << " "
 << vision[i].blue << " " << endl;
};

void Entity::listen(double sounds[]) {
 //copy sounds into hearing
 for (int i=0; i<messLength; i++)
 hearing[i]=sounds[i];
};

char Entity::move(eEntityType type, double worldNoises[]) {
 double *inputs = new double[pSourceDna->ins];
 double *outputs = new double[pSourceDna->outs];
 int i; //general loop variable
 char returnVal;

 //need to prepare inputs for controller
 int upto=0; //which part of the input we are defining
 //set first position to be 1 for bias calcs
 inputs[upto++] = 1;
 //add positional information, if entity has a global
 //positioning system (gps set=2)
 if (gps!=0) {

Co-evolution of cooperative behaviour

 103

 inputs[upto++] = loc.x;
 inputs[upto++] = loc.y;
 };
 //add vision information, if the entity has vision
 if (numEyes!=0) {
 //transfer to input array
 for (i=0; i<numEyes; i++) {
 inputs[upto++] = vision[i].red;
 inputs[upto++] = vision[i].green;
 inputs[upto++] = vision[i].blue;
 }; //for
 }; //if
 //add noises, if the entity is not deaf and is a follower
 if ((type==follower) && (messLength!=0)) {
 for (i=0; i<messLength; i++)
 inputs[upto++]=hearing[i];
 };

 //should have filled up all the slots now
 assert(upto==pSourceDna->ins);

 //think about things
 pController->propogate(inputs,outputs);

 //extract from output the noise it made
 //but only if this is the leader
 if (type==leader)
 for (i=0; i<messLength; i++)
 worldNoises[i]=outputs[i];

 //if it is the first entity (the leader) exit now
 if (type==leader) {
 delete [] inputs;
 delete [] outputs;
 return 'x'; //x representing no move
 };

 //find which is highest of the outputs
 double highestValue=outputs[0];
 int highest=0;
 for (i=1; i<decisions; i++) {
 if (outputs[i]>highestValue) {
 highestValue=outputs[i];
 highest=i;
 }; //if
 }; //for

 //make that actual move, depends on how many decisions there are
 if (decisions==3) { //left, right and straight ahead
 switch(highest) {
 case 0: //turn left
 direction += turnAngle;
 returnVal = 'l';
 break;
 case 1: //turn right
 direction -= turnAngle;
 returnVal = 'r';
 break;
 case 2: //go straight
 //not yet implemented
 exit(666);
 returnVal = 's';
 break;
 };
 }
 else {//should be four then!
 assert(decisions==4);
 switch (highest) {
 case 0: //north
 loc.y-=stepSize;
 returnVal = 'n';
 break;
 case 1: //south
 loc.y+=stepSize;
 returnVal = 's';
 break;
 case 2: //east

Co-evolution of cooperative behaviour

 104

 loc.x+=stepSize;
 returnVal = 'e';
 break;
 case 3: //west
 loc.x-=stepSize;
 returnVal = 'w';
 break;
 }; //end of switch */
 }; //else

 //free inputs
 delete [] inputs;
 delete [] outputs;
 return returnVal;
 //ps. doing checking for world wrap by world object
};

void Entity::relocate(Position newLoc, double newDirection) {
 loc=newLoc;
 direction=newDirection;
};

void Entity::changeColour(Colour newColour) {
 looks=newColour;
};

void Entity::resetFitness(void) {
 pSourceDna->fitness[raw]=(float)0;
};

Co-evolution of cooperative behaviour

 105

Colour header and class definitions

/* colour structure for vision things
 Matthew Kelcey
 Honours Research Code
*/

#ifndef COLOUR_H
#define COLOUR_H

class Colour {
 friend ostream &operator<<(ostream &output, const Colour &c) {
 cout << "(" << c.red << "," << c.green << "," << c.blue << ")";
 return output;
 };
public:
 Colour() {red=green=blue=(double)0;};
 Colour(double r, double g, double b) {red=r;green=g;blue=b;};
 void set(double r, double g, double b) {red=r;green=g;blue=b;};
 void reset(void) {red=green=blue=0;};
 double red,green,blue;
};

#endif

Co-evolution of cooperative behaviour

 106

Neural Network header file

/* NEURAL2.H
 3-level neural network object class
 inputs and outputs in range -1 to 1
 no momentum implementation or flat spot weight correction

 by Matthew Kelcey
 Honours Research Code
*/

#ifndef NEURAL2_H
#define NEURAL2_H

#include <stdlib.h> //for rand() function used in creation
#include "virtudna.h"

struct listNode {
 double *weights; //array to be dynamically created
 listNode *next;
};

class Network {
public:
 //default
 Network(void);
 //number nodes in layers (input,output), and dna;
 Network(vDNA*);
 //destuctor for removing dynamically created arrays
 ~Network();

 //progogate inputs through network and sets outputs
 void propogate(double[],double[]);
 //propogate and determine magnitude of error (tests & true values)
 double errorMagnitude(double[], double[]);
 //train network with input array and true values array and training rate
 void train(double[], double[], double);

 //make from the dna
 void constructFromDNA(vDNA*);
 //inject network info back into the dna
 void injectToDna(void);

 //raw fitness accessing
 void clearRawFitness(void);
 void addToRaw(double);

 //for debugging
 void display(void);

 //this should be private but I trust my own access to it
 int hiddenNodes; //number of

private:
 //keep pointer to parent dna for changing after training
 vDNA *parentDna;
 //need to store which part of the chromosone each node came from
 //for reinjecting trained values back into the actual dna
 int *positions;

 ////implement weight values in terms of linked list of arrays since
 ////it gave optimal performance under testing.
 //list of arrays containing weights in hidden layer
 listNode *hiddenWeights;
 //list of arrays containing weights in output layer
 listNode *outputWeights;
 //hidden layer node values (to be created dynamically)
 double *hiddenValues;
};

#endif

Co-evolution of cooperative behaviour

 107

Neural Network class definition

/* NEURAL2.CPP v3.0
 neural class method definitions
 by Matthew Kelcey
 Honours Research Code.
*/

#include "neural2.h"
#include <math.h> //for exp and pow
#include <iostream.h> // for debugging

void Network::addToRaw(double value) {
 parentDna->fitness[raw]+=value;
};

void Network::clearRawFitness(void) {
 parentDna->fitness[raw]=0;
};

//dot product function for fast double dp's
//optimised for pipelining on PentPro
double dotProd(int len, double *a, double *b) {
 int k,m;
 double sum=(double)0;
 k=len/4;
 m=len%4;
 while (k--) {
 sum += *a * *b;
 sum += *(a+1) * *(b+1);
 sum += *(a+2) * *(b+2);
 sum += *(a+3) * *(b+3);
 a += 4;
 b += 4;
 };
 while (m--)
 sum += *a++ * *b++;
 return sum;
};

//constructors
Network::Network(void) {
 //nothing to do yet, useful for allocating
 //space before actual dna is known
};

Network::Network(vDNA *dna) {
 //make it from the dna
 constructFromDNA(dna);
};

void Network::constructFromDNA(vDNA *dna) {
 int i; //loop variable

 //store dna pointer for changing when training
 parentDna=dna;
 //define the numbers of nodes in each layer
 hiddenNodes = dna->numHiddens();

 //define lists for weights for network from dna
 //and construct them now
 hiddenWeights = new listNode;
 outputWeights = new listNode;
 //and array for holding which genes nodes are drawn from
 positions = new int[hiddenNodes];

 //make list structure for hidden weights list
 listNode *iter;
 iter=hiddenWeights;
 for (i=0; i<hiddenNodes-1; i++) {
 iter->weights = new double[parentDna->ins];
 iter->next = new listNode;
 iter=iter->next;
 };

Co-evolution of cooperative behaviour

 108

 iter->weights = new double[parentDna->ins];
 iter->next = 0;
 //and also make list for output weights arrays
 iter=outputWeights;
 for (i=0; i<parentDna->outs-1; i++) {
 iter->weights = new double[hiddenNodes];
 iter->next = new listNode;
 iter=iter->next;
 };
 iter->weights = new double[hiddenNodes];
 iter->next = 0;

 //extract data from strand and put it in these arrays
 //and also into bias values array, and store info on positions
 int upto=-1; //how far along dna strand we are
 listNode *iterH = hiddenWeights;
 listNode *iterO = outputWeights;
 int whichNode = 0; //which node we are adding now.
 //scan along strand and define weights for active nodes in hidden layer
 while (++upto < parentDna->length) {
 //is there a new array to define?
 if (dna->piece[upto] > 0) {
 //store where it came from
 positions[whichNode] = upto;
 //get values for hidden layer
 for (i=0; i<parentDna->ins; i++) //can put upto++ in here?
 iterH->weights[i] = dna->piece[++upto];
 iterH = iterH->next;

 //get values for output layer
 iterO = outputWeights;
 while (iterO->next!=0) {
 iterO->weights[whichNode] = dna->piece[++upto];
 iterO = iterO->next;
 };
 iter->weights[whichNode] = dna->piece[++upto];
 //up to adding potential next node
 whichNode++;
 }
 else //skip along strand to next node definition
 upto += parentDna->geneLength-1;
 };

 //create dynamic array for holding values propogated through network
 hiddenValues = new double[hiddenNodes];
};

//to delete a list, used by deconstructor
void deleteList(listNode *iter) {
 while (iter->next!=0) {
 delete [] iter->weights;
 iter=iter->next;
 };
 delete [] iter->weights;
}; //deleteList

//destroy the network by freeing memory used by the arrays
Network::~Network() {
 //free up memory
 deleteList(hiddenWeights);
 deleteList(outputWeights);
 delete [] hiddenValues;
 delete [] positions;
};

//propogate values from x array through network to y array
void Network::propogate(double inputs[],double output[]) {
 int i; //for loops

 //evaluate values for hidden nodes (with sigmoid function)
 listNode *iter = hiddenWeights;
 for (i=0; i<hiddenNodes; i++) {
 hiddenValues[i] = dotProd(parentDna->ins, inputs, iter->weights);
 hiddenValues[i] = (double)(1/(1+exp(-hiddenValues[i])));
 iter = iter->next;
 };

Co-evolution of cooperative behaviour

 109

 //evaluate values for output nodes
 iter = outputWeights;
 for (i=0; i<parentDna->outs; i++) {
 output[i] = dotProd(hiddenNodes, hiddenValues, iter->weights);
 iter = iter->next;
 };
};

//propogate and determine magnitude of error
double Network::errorMagnitude(double input[], double trueValue[]) {
 //for comparing against true values
 double *output = new double[parentDna->outs];
 double errorMagnitude = (double)0;

 //get outputs first for error comparison;
 propogate(input,output);

 //calculate error magnitude as the mean square error
 for (int j=0; j<parentDna->outs; j++)
 errorMagnitude += (double)pow(trueValue[j]-output[j],2);
 errorMagnitude /= parentDna->outs;

 //free memory
 delete [] output;

 return errorMagnitude;
};

//train network byb modifying weights given
//input array inputs and true values array
void Network::train(double inputs[], double trueValues[],
 double trainingRate) {
 int i,j,k; //for array handling
 //outputs for calculating error magnitudes
 double *outputs=new double[parentDna->outs];
 listNode *iterO, *iterH; //iterator for output nodes and hidden nodes

 //first propogate values through the network to obtain outputs
 propogate(inputs,outputs);

 //adjust hidden weights
 iterH = hiddenWeights;
 for (j=0; j<hiddenNodes; j++) {
 //do sumation
 double sum=(double)0;
 iterO = outputWeights;
 for (k=0; k<parentDna->outs; k++) {
 sum += (outputs[k]-trueValues[k])*iterO->weights[j];
 iterO=iterO->next;
 };
 for (i=0; i<parentDna->ins; i++)
 iterH->weights[i]-=trainingRate*hiddenValues[j]*
 (1-
hiddenValues[j])*inputs[i]*sum;
 iterH=iterH->next;
 };

 //adjust output weights
 iterO = outputWeights;
 for (k=0; k<parentDna->outs; k++) {
 for (j=0; j<hiddenNodes; j++)
 iterO->weights[j]-=trainingRate*(outputs[k]-trueValues[k])

 *hiddenValues[j];
 iterO=iterO->next;
 };

 //free memory
 delete [] outputs;
};

void Network::injectToDna(void) {
 listNode *iterH = hiddenWeights;
 listNode *iterO = outputWeights;

 //go through each of hidden nodes writing back to dna
 for (int whichNode=0; whichNode<hiddenNodes; whichNode++) {

Co-evolution of cooperative behaviour

 110

 //where to start injecting
 int upto=positions[whichNode]+1; //add one since not changing active
term
 //inject weights for hidden layer (incoming weights)
 for (int j=0; j<parentDna->ins; j++)
 parentDna->piece[upto++] = iterH->weights[j];
 iterH = iterH->next;
 //inject weights for output layer (outgoing weights)
 iterO = outputWeights;
 while (iterO->next!=0) {
 parentDna->piece[upto++] = iterO->weights[whichNode];
 iterO = iterO->next;
 }; //while
 parentDna->piece[upto++] = iterO->weights[whichNode];
 }; //for i
};

/// debugging routines

//for displaying weights arrays
void displayArray(double *array, int length) {
 for (int i=0; i<length; i++)
 cout << array[i] << " ";
 cout << endl;
};

void Network::display(void) {
 cout << "network is " << parentDna->ins << ", "
 << hiddenNodes << ", " << parentDna->outs << endl;
 //display hidden node weights
 listNode *iter=hiddenWeights;
 cout << "HIDDEN WEIGHTS" << endl;
 while (iter->next!=0) {
 //print out array
 displayArray(iter->weights,parentDna->ins);
 iter = iter->next;
 };
 displayArray(iter->weights,parentDna->ins);

 //display output node weights
 iter=outputWeights;
 cout << "OUTPUT WEIGHTS" << endl;
 while (iter->next!=0) {
 //print out array
 displayArray(iter->weights,hiddenNodes);
 iter = iter->next;
 };
 displayArray(iter->weights,hiddenNodes);

 int q; cin >> q;
}; //displayWeights

