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Abstract 

Much work has been done on applying evolutionary techniques to a number of 

varying applications and in particular the training of neural networks. Most 

evolutionary systems though are aimed at solving tasks requiring only a single entity. 

This project applies co-evolutionary techniques to construct teams for multiple entity 

problems with a focus on the communication aspects required between team 

members. 
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1 Introduction 

1.1 Objectives 

Evolutionary techniques in all their forms, such as genetic algorithms, genetic 

programming and evolution strategies, have been shown to give good results with a 

wide range of varying problems. In particular they have been able to evolve 

behaviours in simulated and real-time based controller systems, generally in the field 

of robotics. Most research studies have focussed on a single controller for a single 

entity performing the required task. Less work has been done on team based problems 

where a number of distinct entities are used to construct each possible solution. Any 

communication in these types of systems has been predefined and static. 

 

The objective of this project is to incorporate the communication aspects of team 

based problems into the evolutionary system so that it can be evolved as an aspect of 

the behaviour of an individual. This has the advantage of allowing complex problem-

specific communication systems to be evolved unique for each task. Once such a 

system has been developed it can be compared with human defined communication 

systems to decide whether evolving communication in this way can be useful. 

 

All evolutionary systems also have the advantage that they can be coded somewhat 

independently of the problem being solved. As such it is an aim of this project to 

develop a system that requires the minimum knowledge of how the communication 

will act, only needing a definition of what behaviours to reward. In this way the 

desired behaviour of a problem can be abstracted away from the actual details of the 

underlying communication that will be involved. 

 

1.2 Method 

This project involves five distinct stages 

1. The study of literature dealing with previous research in the areas of genetic 

algorithms, neural networks and the combination of the two. 



Co-evolution of cooperative behaviour 

 8

2. The design and implementation of a simple generic evolutionary system 

incorporating a number of different implementation aspects and several new 

procedures1. 

3. The design and implementation of a simple feed forward neural network 

class for the simulation of possible controller solutions. 

4. The refinement of the evolutionary framework to perform specifically on 

the neural network architectures defined in stage 3. 

5. The testing of the system on increasing difficult tasks with conclusions on 

whether such an approach can give valid solutions within time and 

processing effort feasibility constraints. 

1.3 Summary literature review 

Evolutionary techniques are so called because of the conceptual similarities that exist 

between them and the general principles of natural selection and genetics. Such 

techniques work by maintaining a population of individuals, each of which is an 

encoded instance of a possible solution to the problem being solved. Techniques are 

defined for the recombination of these individuals that have been chosen by selection 

methods. 

 

Co-evolutionary techniques are an extension to include maintaining a number of 

populations at once. One reason this is done is to provide solutions to problems that 

require a number of different parts, such as the co-evolutionary paradigm. 

 

When applying such techniques to specific problems such as neural networks2 a 

number of issues must be addressed. The resolution of these issues often involves the 

modification and specialisation of the evolutionary framework to work only on that 

type of problem. 

                                                
1 Including pairwise elitism, selective genetic operators, sub-population team based management and 

guessing-based selection 
2 And in particular neural networks as a means of defining some form of controller. 
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2 Relevant literature 

2.1 Evolutionary Techniques 

2.1.1 General Concepts. 

Evolutionary algorithms use principles described in natural selection and genetics as 

the basis of an adaptive searching technique. Luger and Stubblefield (1993 :529) 

describe the genetic algorithm as an “implementation of a powerful form of hill 

climbing that maintains multiple solutions, eliminates unpromising solutions and 

improves good solutions.” Since they are a parallel search method they are proficient 

at quickly finding near optimal solutions for domains whose state space consist of 

many local minima. Though the execution of evolutionary techniques can be slow 

Wasserman (1993 :74) states “In the long run, this is probably not a valid objection. 

These algorithms, like neural networks, are parallel in nature; their execution rate 

increases almost linearly with the number of processors.” Schultz (1994 :3) also 

points out that “…because of the nature of the genetic algorithm, the initial 

knowledge does not have to be very good; it only needs to make the system have an 

occasional success at performing the task.” 

If an approximate solution found by the system is not accurate enough quite often 

more traditional methods will converge on a final solution faster. In this way hybrid 

combinations of evolutionary techniques and other search methods may produce more 

efficient results. 

 

Once a problem is clearly defined an encoding for each possible solution needs to be 

chosen for the evolutionary technique to work on. This is usually a vector termed the 

chromosome. A way of converting this chromosome (the individual’s genotype) into a 

potential solution (the individual’s phenotype) needs to be defined, unique for the 

encoding and the problem. A fitness function is also needed that assigns a real value 

to each solution based on its relative ability to complete the objective. The allocation 

of a fitness function is a non-trivial task3 and its definition will have a great outcome 

on the performance of the overall algorithm. An evolutionary technique works on a 

                                                
3 For non-trivial problem domains. 
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population of initially random possible solutions4 and at each time step defines a new 

generation. 

 

The three genetic operators are selection, recombination and mutation. Using these 

methods individuals of the population are chosen proportional to their relative fitness 

and recombined to create a new population whose overall average fitness is greater 

than the last generation. There are a number of issues though which must be 

addressed for each unique problem. These include the following. 

• Representation: evolutionary algorithms work with “genetic” 

representations of trial solutions, usually in form of a string of real 

or integer numbers. The user has to provide a suitable 

representation and a function that maps genetic representations into 

phenotypic trial solutions 

• Performance: a function has to be provided that associates a 

performance value with each individual. The performance should 

reflect how good or how useful the individual is to solve the 

considered problem. 

• Creation of offspring: the user has to specify operators (eg. 

crossover or mutation) that allow the creation of new individuals 

given one or two parent individuals. Very often these operators 

need repair functions to ensure that the offspring is a valid trial 

solution, or they include local hill climbing to speed up the local 

fine-tuning.  

(Branke, 1995 :2) 

 

Functions such as crossover and inversion use information already in the population 

as a means of generating better solutions. Mutation techniques introduce new 

information about the search space into the system and ensure that the system both is 

able to reach every location in the search space and will not always become stuck in 

local minima. Since evolutionary algorithms have been shown to be poor local fine 

tuners (Yao, 1996) (Branke 1995) hybrid approach’s using local gradient search based 

methods can in certain conditions outperform either used alone. Usually the method is 

                                                
4 Some pre-processing can be done on the initial solutions to aid the algorithm’s performance. 
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to apply the genetic technique until there is some manner of convergence and then 

switch to a local hill climber (such as back propagation)  

 

Procedures for implementing these methods in terms of a genetic algorithm were first 

introduced by John Holland (Holland, 1962) and A. Fraser (Fraser, 1962) working 

independently with few differences. The main difference between their early work 

was “...Holland suggested reproducing each parent in proportion to its relative 

fitness.” (Fogel, 1996 :90)  

2.1.2 Selection Methods 

It is important to make fitness evaluation a function that is as continuous as possible 

so that the genetic operators can correctly discriminate between the different levels of 

fitness in the population, even so a non-continuous function can provide valid results. 

After fitness evaluation the raw fitness values must be converted to some scaled 

fitness values ready for the selection process.  For example if minimising an objective 

function then small-raw functional values should be mapped onto high-scaled fitness 

values for selection.  

A technique such as roulette selection requires that all fitness values are positive and 

adding any constant to remove negative values will scale the values unevenly, making 

the selection act as a random function.  

A number of approaches to converting the fitness from raw values to scaled values 

exist and can be used alone or in combination. 

Masters (1993) gives the example of the function to map fitness values from low-raw 

to high-scaled values, F(v) = eKv for some negative constant K. He states for values of  

v ∋ [0..1] from experimentation using K = -20 is effective.   

Goldberg (1989) scaled all fitness values relative to the mean fitness of the entire 

population to make the maximum fitness a predefined constant multiple, k, of the 

mean. By experimentation he claims that rescaling with k between 2 and 1.5 gave 

robust results. 

 

Another problem associated with roulette selection is that the best chromosome in any 

population can be lost in a generation through chance.  

One way to ensure asymptotic convergence towards a global maximum is to apply a 

heuristic such as elitism selection (Grefenstette, 1986) where the fittest individual in 
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each generation is copied to the next generation unchanged. The actual rate of 

convergence though varies for each application. 

 

Masters (1993) used a technique based on roulette selection that guarantees that the 

fittest individuals in each generation are selected for reproduction. He produced an 

array, the size of the population, of individuals to choose from and selection was 

made from this array. Each individual has an expected frequency calculated and 

individuals with a frequency of n.something are included n times in the array. Once 

all individuals with an expected frequency greater than one have been included the 

remainder of the array is filled with individuals that have an expected frequency of 

less than one.  

2.1.3 The Genetic Operators 

2.1.3.1 Crossover 

Crossover is the main genetic operator in most systems. It involves the recombination 

of two (or possibly more) parent chromosomes into one or two children 

chromosomes.  

 

One point crossover works with two parents to produce two children. The effect of 

one point crossover is shown in figure 2.1-1. When using one point crossover genes 

nearer the middle are more likely to be separated than genes near the ends. One point 

crossover also requires some kind of  inversion5 for reordering of the chromosome to 

remove this potential problem 

Parents Children

One point crossover

 

1 Figure 2.1-1: One point crossover 
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Two point crossover uses a similar technique with two crossover positions chosen. 

Two point crossover can be thought of as treating the chromosome as cyclic. Since 

the advantage inversion displays in one point crossover is no longer apparent, it is no 

longer required. The effect of two point crossover is shown in figure 2.1-2 

 

Parents Children

Two point crossover

 

2 Figure 2.1-2: Two point crossover 

 

Uniform crossover is a gene-wise operator producing one child that assigns the child’s 

nth gene from the first or second parent based on some measure of their relative 

fitness. Syswerda (1989) had greater success using a uniform crossover operator as 

opposed to using one or two point crossover on a series of functional optimisation 

experiments. 

2.1.3.2 Mutation 

Mutation must be used in extreme moderation as it is a dangerous and destructive 

operator. However it is required in any genetic system since it is the basis of 

introducing new genetic material into the population. Rechenberg (1965) and 

Schwefel (1965) both developed similar genetic techniques using only the mutation 

operator.  

When using a binary alphabet for encoding, mutation requires only the flipping of a 

single bit. 

When using a more complex encoding scheme, for example real value encoding, a 

common mutation operator is the addition of a Gaussian random number with mean 

                                                                                                                                       
5 Inversion is genetic operator that reverses the order of the chromosome between two randomly chosen 

points. 
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zero and standard deviation proportional to the individuals relative fitness. By using 

an adaptive mutation operator such as this the destructive effects on highly fit 

chromosome’s is to a lesser degree then when it is applied to the more unfit 

chromosomes.  

Another form of mutation with real value optimisation is the replacement of a position 

on the chromosome with a completely new random value. 

2.1.4 Premature Convergence 

Premature convergence is often apparent in evolutionary techniques due to the strong 

emphasis on crossover and the selection of the fittest individuals (Kursawe). Once 

convergence has occurred only the genetic operator of mutation makes changes to the 

population turning the search into a random walk. This is when a hill climbing 

heuristic can become useful to make use of both the strengths of a genetic technique 

and a gradient search based method. 

Schraudolph and Belew (1992) used an approach they name dynamic parameter 

encoding as a means to avoid premature convergence. This technique uses a heuristic 

to determine when convergence has occurred and dynamically resizes the available 

range of each parameter to become smaller. This in effect “zooms in on solutions that 

are closer to the global optimum than provided by the initial precision” (Fogel, 1996, 

:95) If the global optimum is not included in the initial range of parameter values 

though this technique will be unable to find it. Schraudolph and Belew found that 

dynamic parameter encoding worked well when searching a quadratic bowl but 

poorly when searching a multimodal function such as Shekel’s foxholes. 

2.1.5 Specific Methods  

There are three major forms of evolutionary techniques being genetic algorithms, 

evolutionary strategies (or evolutionary algorithms) and genetic programming (or 

evolutionary programming). A comparison of these techniques can also be found in 

(Fogel, 1993). 

2.1.5.1 Genetic Algorithms 

Formally a genetic algorithm uses only a binary alphabet to coincide with schemata 

theory. “Holland recognised that every evaluated string actually offers partial 

information about the expected fitness of all possible schemata in which that string 
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resides” (Fogel, 1996, :92-93, in reference to Holland, 1975, :66-74) This 

information, gained with many schemata, is termed ‘implicit parallelism’.  

Using a binary alphabet is powerful in the sense that the genetic operators working on 

chromosomes are quite simple. Mutation for example is simply the inversion of one 

position in the bit string. However the size of chromosomes for complex problems 

may be in the order of thousands of bits and can be slow and produce inaccurate 

values. 

2.1.5.2 Evolutionary Programming 

Rather than evolving specific solutions to a problem a collection of actual algorithms 

associated with the problem can be encoded and recombined. L. Fogel pioneered this 

general concept as a means of simulating evolution on a population of competing 

algorithms to develop artificial intelligence. (Fogel, 1962). He used it to evolve finite 

state machines for such tasks as predicting prime numbers (Fogel, 1966) and also with 

Burgin as a means of evolving strategies for simple games. (Fogel, Burgin, 1969) 

When evolutionary programming is applied to real valued optimisation problems they 

behave as evolutionary strategies, independently researched and described below. 

2.1.5.3 Genetic Programming 

One problem with using evolutionary techniques for neural network evolution is 

scaling. A fully connected network with N neurons will have N2 connections and this 

produces impractical sizes for chromosomes. Genetic programming is a method of 

evolving a set of growth rules rather than a direct representation of the problem and 

can be thought as a solution recipe. This adds another layer of abstraction onto an 

encoding with chromosomes consisting of rules on how to build the actual phenotypic 

representation. Gruau (1994) developed an algorithm for compact cellular growth 

based on symbolic S-expressions as a means of creating network growth rules. 

Esparcia-Alcazar and Sharman (1995) found “Although this method can evolve very 

elaborate structures, we have observed that it takes very long to converge to an 

optimum, which is unsuitable for certain applications.” (Alcazar, Sharman, 1995 :1)  

2.1.5.4 Evolutionary Strategies  

Evolutionary Strategies use a value type deemed necessary in the encoding of a 

chromosome. This is important in problems that use real valued parameters as a 

binary alphabet can not give the precision required without a long chromosome. 
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The evolutionary strategy approach was first explored independently by Rechenberg 

(1965) and Schwefel (1965) addressing the problem of real valued continuous 

function optimisation. “In this model, the components of a trial solution are viewed as 

behavioural traits of an individual, not as genes along a chromosome” (Fogel, 1996 

:85)  

 

Kursawe studied evolutionary strategies in the context of multiple criteria 

optimisation.  To cope with the changing environment that is apparent with two or 

more criteria he employed the use of dominant and recessive genes in his encoding. 

His studies on co-optimising two complex functions showed exchanging the recessive 

and dominant genes for each individual with a probability of around 0.3 gave robust 

results. He concluded also from further testing that when only maximising one 

objective function the modelling of diploid6 individuals was not worth the extra 

computation. 

 

Two main approaches are in use today denoted by (µ+λ)-evolutionary strategies and 

(µ,λ)-evolutionary strategies with µ indicating the number of parents and λ indicating 

the number of offspring per generation.  In a (µ+λ) evolutionary strategy the µ fittest 

of all the solutions move into the next generation where as in a (µ,λ)-evolutionary 

strategy competition is only between the λ offspring with all parent’s being replaced. 

2.2 Simple Neural Network Design 

A neural network is a biologically inspired parallel-distributed processing method. It 

consists of a number of nodes (or neurons) connected by links. These nodes process 

the values on the links entering them by means of an activation function and distribute 

the result on the links leaving it. Each link has an associated weight that scales any 

signal passing along it and it is these weights that act as the network’s information 

storage mechanism. Teaching the network is usually achieved by manipulating these 

weight values. A number of nodes are reserved as the input and output of the network.  

 

                                                
6 Polyploidy refers to the number of distinct copies of the chromosome kept by each individual. 

Includes haploid (one copy), diploid (two copies), triploid (three copies) and tetraploid (four copies). 
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The simplest network is called a perceptron and consists of one layer of weighted 

connections. An example perceptron is shown in figure 2.2-1.  

 

OutputsInputs

 

3 Figure 2.2-1: One level perceptron 

 

A network can also consist of a number of hidden layers containing nodes not directly 

acting as either input or output. An example single hidden layer network is shown in 

figure 2.2-2 

 

OutputsInputs

 

4 Figure 2.2-2: Single layer feed forward network 

 

These networks are fully connected in that each node has a link to every node in the 

next layer. Such networks are also called feed-forward networks since links only exist 

from one layer to the next. Recursive networks can have connections from a node to 

any another node, regardless of the layer and can include links from a node back onto 

itself.  

 

The activation function of each node takes the weighted inputs along all the links 

entering that node and applies some function to serve as the output for that node. This 

function is usually non-linear to produce a continuous response and needs to be 

differential if using a back propagation based training method. A sigmoidal function 

is often used since it produces a similar result to a simple threshold function but gives 
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more accurate information when determining the error magnitudes that are needed for 

the training. 

 

Training of a network is usually based on a gradient descent search of the error 

response surface called back propagation. Given the network’s response to inputs and 

the actual desired result an error value can be calculated and fed backwards through 

the network to adjust weight values. For a more comprehensive discussion on back 

propagation algorithms see (Luger, StubbleField, 1995) 

2.3 Evolving General Neural Networks  

2.3.1 Overall Issues 

The evolution of a neural network involves two parts, the selection of an appropriate 

network topology and the optimisation of the interconnecting weights. Both of these 

problems can be solved, separately or together, with a number of distinct approaches.  

 

Issues that must be addressed with both stages of evolution include… 

• How the representation of encoding scales to large networks. 

• Whether reproduction operators create valid and more useful networks. 

• Whether the best network can be represented by the encoding scheme. 

• How invalid network designs are handled (usually left alone and 

subsequently ignored by genetic process due to the poor fitness values 

allocated to them) 

 

There are two paradigms to designing a network’s genetic encoding, low-level 

encoding7 and high-level encoding8. Low level encodings are a specification of each 

connection and weight explicitly, and grow exponentially with the size of the required 

network. High level encodings encode a means of constructing the network (referred 

to as “growth rules” by Branke, 1995) and if encoded correctly are the same size 

regardless of the size of network’s produced.  

 

                                                
7 Also known as strong or direct encoding. 
8 Also known as weak or indirect encoding. 
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An example of a combination of high and low level encoding is possible for example 

with space on the chromosome reserved for weight values (low level information) and 

also connection information (high level information). 

When choosing an encoding scheme it is important to ensure human bias doesn’t 

exclude networks that may be optimal. 

2.3.2 Encoding 

Real value encoding is one sensible choice for a low level network encoding scheme 

because it is more consistent and precise and results in faster execution (Michalewicz, 

1992) (Thierens et al, 1993) (Yao, 1996).  

Michalewicz (1992) also claimed that for extremely large state spaces, genetic 

algorithms perform poorly though “it is only fair to say maximising implicit 

parallelism will not always provide for optimum performance” (Fogel, 1996 :94) 

Since weights are real values the use of binary encoding results in very large 

chromosomes with low precision and can slow down the evolution process. The 

simplest low level encoding for a network is concatenating all the network’s weights 

into one string.  

The main genetic operator crossover is more likely to separate gene information 

spaced apart on the chromosome so it is sensible to place similarly functional units 

close to each other. Thierens et al (1993) placed incoming and outgoing weights of a 

node next to each other.  

Yoon et al (1994) placed all incoming weights of each node together and all nodes of 

each layer together.  

Saha and Christensen (1994) used an encoding method that incorporates both weights 

and weight connections by supplying for each node an extra bit per weight 

representing whether that connection is present or not.  

An example of an encoding used to describe the connection pattern of a possible 

network is shown in figure 2.3-1 (Miller et al, 1989) 
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Phenotype representation:
Adjacency matrix       Actual network connections

     1 2 3 4

1   0 0 1 1
2   0 0 1 1
3   0 0 0 1
4   0 0 0 0

Genotype representation:
(0011001100010000)

3

4

21

 

5 Figure 2.3-1: Connection pattern encoding 

 

One major problem apparent in encoding is the permutation problem, (Yao, 1996) 

also referred to as the competing conventions problem, (Branke, 1995) due to the fact 

that many valid possible genotypes can map into one unique phenotype. “The group 

of functionally equivalent but structurally different networks can be defined by two 

simple transformations.” (Branke, 1995 :14)  

The first is a permutation of the genotype that moves whole node information, leaving 

the phenotypic representation of the network unchanged. The second is the inversion 

of all the weights signs in a node with an odd activation function, again giving 

different representations of functionally equivalent nodes. (Branke, 1995).  

There are also problems dealing with the consideration of the extra size of the state 

space (Branke, 1995) and the reproduction of unfit children using multiples of the one 

node. (Yao, 1996) With n nodes there are n! functionally equivalent nodes under the 

first transformation and 2n under the second transformation.  

Braun and Weisbrod (1993) attempted to avoid the permutation problem by making 

long connections less probable than short connections thus preferring the structured 

mapping with the shortest connection length.  

Thierens et al. (1993) reordered the genetic string before applying crossover in such a 

way that nodes with a similar number of negative and positive weights are in the same 

general position on the chromosome.  
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2.3.3 Weight Optimisation 

For a network with a fixed topology the selection of interconnecting weights is an 

optimisation problem with the goal to maximise the network’s performance (Branke, 

1995).  

Evolutionary algorithms can be used for problems where gradient information is 

unavailable since they do not use it. This is apparent in problems for “networks with 

non differentiable transfer functions” (Branke, 1995 :4), recurrent networks and when 

using reinforcement learning methods (Yao, 1996). Also since they are a global 

search they can overcome many of the problems associated with local minima.  

However there needs to be a way of defining the performance of a network for the 

allocation of relative fitness.  

With problems where gradient information is easily obtainable methods such as 

quickprop or cascade correlation usually outperform evolutionary approaches 

(Schaffer et al, 1992) 

2.3.4 Topology Optimisation 

 If the topology is too small (in terms of units and connections) 
the network might not be able to represent or even learn the 
desired input/output mapping. On the other hand, if it is too 
large, the network very often generalises poorly to inputs 
previously unseen. 

 (Branke, 1995 :5)  

 

There is no restriction on the topology of a network evolved by an evolutionary 

technique since they use no error signal back propagation (Branke, 1995). This can 

make evolutionary techniques appropriate for non-feed forward network designs such 

as recurrent networks.  

2.3.5 Control Parameter Optimisation 

The use of evolutionary techniques can also be applied to calculating control 

parameters for gradient based learning techniques. This can either be included as extra 

parameters in a hybrid approach or as its own genetic system.  

Evolved parameters can include values such as learning rate, momentum values and 

the initial weight range. (Belew et al, 1989) (Marshall, Harrison, 1991) 
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Also work has been done on evolving parameters such as the activation function, bias 

values, the learning strategy, weight decay terms and the number of training epochs 

(Marshall, Harrison, 1991) 

2.3.6 Fitness Evaluation 

Fitness evaluation must take into account two factors, the performance and the size of 

the network. The most common performance measure is a function of the network’s 

mean square error (MSE) in relation to a test set. Since a low MSE indicates good 

performance where as evolutionary techniques take low values as indicating a low 

fitness there needs to be some inversion mapping applied. Usually 1/MSE, 1/1+MSE 

or maxMSE-MSE (if a maximum MSE if known) are used for this mapping.  

If a test set is unavailable, as is the case in such applications as robotic controllers, 

(Salama, Hingston, 1995) (Grefenstette, 1994) (Schultz, Grefenstette 1994) some 

measure of the network’s performance at its given task needs to be defined.  

As a means of selection Fogel et al. (1990) enforced that each network was only 

admitted to the next after competition with ten other individuals. The probability of a 

network ‘winning’ against another was equal to the opponent’s error score divided by 

the sum of both error scores. 

A heuristic can also be included in the evaluation of fitness to reward each good 

property of a network. Whitley et al (1990), for example, used a bias to allocate more 

of the overall training time to networks with a small number of hidden nodes.  

2.3.7 Genetic Operators 

When genetic operators such as crossover, inversion and mutation are to be used it 

has to be decided on what scale the operations act, or deciding “on what constitutes a 

gene” (Branke, 1995 :5)  

Thierens et al (1993) developed a possible crossover operator that exchanged hidden 

node information with all incoming and outgoing weights.  

In terms of crossover applied to the connection pattern of two networks Braun and 

Weisbrod (1993) allocated a connection to a child when both the parent’s exhibit that 

connection. If only one parent had the connection then it is passed on with a user 

defined probability. The actual values of weights are also some user-defined function 

of the parent’s weights. 
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 “A good mutation operator should adhere to the principle of strong causality, ie. It 

should in most cases cause small differences in quality” (Utrecht, Trint, 1994)  

To follow this causality Angeleline et al (1994) made all new connections created 

with associated weights set to zero and had new nodes added with no connections to 

other nodes.  

Branke (1995) initialised new weights with small random values as well as removing 

low valued connections.  

Fogel et al. (1990) used a mutation operator that added a random Gaussian number to 

selected weights and decreased the deviation of the variable over time as a means of 

annealing. 

2.4 Evolving Neural Network Controllers 

2.4.1 General Overview  

Usually a controller for a robot system involves inputs coming from sensors of some 

type and outputs mapping onto a number of possible actions. Evolutionary techniques 

have been used successfully in a number of different problems to evolve controllers 

for robot systems. Usually though these systems are simulation based only and hence 

are different to real life models in many respects.  

Grefenstette and Shultz make the comment that evolving a controller system “…will 

usually require that the learning system be given whatever level of knowledge can be 

easily provided by the designer.” (Grefenstette, Schultz, 1994 :65) 

2.4.2 Fitness evaluation 

The evolution of robotic controllers presents an interesting problem in terms of fitness 

evaluation. Classifiers and networks used to predict time series usually use a function 

of the network’s mean square error to determine fitness but since the behaviour of the 

controller is being evolved there is no unique numerical value that can be used for 

this. It is difficult to assign fitness for an individual since it will usually involve a 

certain amount of human bias and error. 



Co-evolution of cooperative behaviour 

 24

2.4.3 Different Approaches 

Wieland (1992) used a genetic algorithm to evolve recurrent networks for controlling 

a number of unstable systems including the broom handle balancing problem (also 

referred to as the inverted pendulum problem).  

 

Lewis et al. (1992) evolved a network of fixed size and used their system to evolve 

the actual weight values for connections. They applied what they describe as staged 

evolution where different parts of the network are evolved separately. Their results 

show an improvement in the rate of global maximum convergence. 

 

Cliff et al. (1993) used the SAGA genetic algorithm package to evolve controllers for 

a simple wheeled robot. The emphasis of their work was to design a structure that 

grew the size of the network for complex tasks and shrunk it for simpler problems.  

 

Schultz and Grefenstette (1994) used a representation language approach to evolve 

simple robot behaviours. They define a behaviour as a set of ‘if..then..’ rules such 

as… 

IF front_sonar<30 AND bearing>10 THEN turn=20 

IF front_ir<5 THEN speed=-10 

They also describe a system for including the rules in a hierarchical system as a 

means of higher level abstraction.  

One of the major benefits with using such a representation is that “…it allows the 

learning system to be easily seeded with initial knowledge.” (Schultz, 1994 :2) Their 

initial population of solutions was generated as a combination of human generated 

rules and a number of variants on them. It seems though that using an approach of 

deriving initial individuals from human solutions may include some kind of human 

bias which may in turn inhibit performance. 

Grefenstette (1994) talks about the same system and makes a number of points about 

using background knowledge. Constraints can be added to limit the generation of 

rules that are known to be undesirable though again this is introducing a form of 

human bias. If the allocation of fitness is correct than any undesirable rule sets will be 

removed by the evolution process itself. 
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Salama and Hingston (1995) used a matrix approach to store network connections in 

their system for evolving a robot controller where matrix element ai, j gives the weight 

from node i to node j. They evolved a simple robot controller for a 6 legged robot that 

walks to a target position using the minimum number of steps. An interesting concept 

in their project is the selection of mating pairs. They include a simulation of a finite 

grid that the networks inhabit. The networks are allowed to ‘wander’ randomly over 

the grid for a set amount of time, at the end of which they breed with the fittest 

network that they encountered. They believe this grid structure introduces a locality 

factor into the selection process that maintains diversity in the population.  

Also included was a uniform distribution of noise applied to the position of the virtual 

robot to simulate some degree of real life noise. They conclude, “By inspection, it 

seems that a moderate level of noise during training is most beneficial.” (Salama, 

Hingston, 1995 :582) 

 

Maher and Poon (1995) propose an encoding method for general optimisation where 

the fitness function is encoded as part of the genotype and as such is co-evolved along 

with design solution. They believe this is an important part of many problems where 

the environment is changing and present a number of alterations to the standard 

genetic algorithm method.  

Included is a design methodology for two-phase crossover, applied first to the 

problem part of the chromosome and secondly to the design solution part. They state 

“Optimisation is part of a design process, but it is not the whole. The design process 

includes the search for the problem as well as the solution.” (Maher, Poon, 1995 :243) 

2.4.4 Problems with Noise 

One main concept in all controller based evolution is the handling of noisy systems. 

Normally simulation models do not accurately take noise into account and produce 

unrealistic results. Also the robustness of most controllers is an issue. Do the training 

procedures applied provide enough generality? Schultz (1994) believes that including 

more noise than is apparent in the real world environment makes evolved knowledge 

in a simulation model more robust. 
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2.5 Co-evolutionary Approaches to Control Algorithms 

2.5.1 The Homogeneous and Heterogeneous approaches 

There are two approaches to evolving a number of entities known as homogeneous9 

and heterogeneous10 evolution. 

 

Reynolds (1993) used a genetic programming approach to evolve “critters” that 

exhibited herding behaviour when attacked by predators. His system evolved a single 

homogeneous controller that moved each critter with information on its position, 

direction, neighbouring critters and predator locations.  

Collins and Jefferson (1991) used a genetic programming approach to evolve a neural 

network controller for ants in an ant colony simulation. A homogeneous network 

controlled each ant with the fitness defined as the amount of food collected in a given 

time span. Inputs to the network included neighbouring information about food, 

pheromone and the nest. Outputs decided the movement of each ant and the laying of 

pheromone.  

Haynes et al (1995) used a heterogeneous approach to a similar problem breeding 

teams of genetically programmed distinct individuals in a simple predator/prey 

system. 

Koza (1992) developed a way of selecting heterogeneous individuals for a team at 

trial time that he termed co-evolution. A population under this scheme is divided into 

sub-populations with each one providing a specialised member for the team.  

 

Whether a problem is homogeneous or heterogeneous makes a large difference in the 

breeding policy of the algorithm. In the homogeneous approach each member of the 

population is evolved as normal and a team is constructed by ‘cloning’ this individual. 

In the heterogeneous approach there is the decision whether members should be 

allowed to breed only with other team members or whether they are allowed to breed 

between teams. (Luke, Spector, 1996) 

An unfortunate problem associated with constructing teams in this way is the so-

called credit assignment problem. When a team of entities has had a fitness value 

                                                
9 A common algorithm control different entities. 
10 Distinct algorithms control different entities. 
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evaluated for them as a whole, which individuals get more credit for the teams 

success or failure? (Haynes et al. 1995) 

 

Haynes et al. addressed this problem by considering the whole team as one individual. 

There are facilities for defining sub-individuals within a main individual constructed 

by Koza (1994) Automatically defined functions and Spector (1996) Automatically 

defined macros. 

2.5.2 Communication Systems and Coevolution examples 

Luke and Spector (1996) in their research developed a simple predator/prey 

environment with one ‘gazelle’ and a number of ‘lions’, the aim of the lions being to 

catch the faster gazelle. They tested a number of different approaches to team 

selection for the predators and also a number of predator communication systems. 

Sample runs found that restricted breeding between team members outperformed11 

free interbreeding for predators that had distinct control algorithms. They also 

addressed the problem of deciding a means of communication between members of 

each team. Their sensing experiments compared name-based sensing12 and deictic 

sensing13 and found that the former outperformed the latter in all cases considered. 

They also found that “…as the sensing becomes increasingly distinct (more name-

based), heterogeneous approaches work better than homogeneous approaches.” (Luke, 

Spector, 1996 :2) 

Naghashi et al. (1995) review a number of approaches to evolving neural controllers 

but point out common problems apparent in most. The first is that when using a 

homogeneous approach all entities act in the same manner when presented with the 

same conditions. This means there is no unique learning mechanism in the scope of 

one entities lifespan, each simulation gives only an evaluation of how the controller 

performs and does not act directly towards improving it. They address this problem by 

giving each entity it’s own independent learning mechanism modelled with what they 

call a classifier system. The simulation used genetic programming to evolve 

                                                
11 In terms of the speed of evolution.  
12 Where entities are referred to explicitly (eg ‘entity number 5’) 
13 Where entities are referred to implicitly (eg ‘nearest neighbour’) 
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“if..then..” rule structures for controlling the entities and observed the evolution of  

mutualism between different entities as a means of survival.  

The simulation consisted of three distinct entity types A, B and C with the following 

main characteristics. 

1. A preyed on B and B preyed on C but there was no interaction between A and C.   

2. Each of the entities had a means of sensing the proximity of others. 

If an entity caught another it gained that entities strength and this was used as a 

measure of the fitness of each individual. Their research found that C evolved a 

behaviour to stay close to A to avoid being caught by B. 
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3 Design and methodology 

3.1 Network encoding 

3.1.1 General comments. 

The genetic system defined for this project evolves the interconnecting weights and 

bias terms for the nodes in the single hidden layer while also performing limited 

optimisation of this layer’s topology. Although this limits the behaviours of the 

networks that can be defined, it gives rise to a simple encoding scheme. 

 

As discussed previously in section 2.3.2 the classic genetic algorithm approach of 

using binary encoding does not seem appropriate for neural networks so real based 

encoding was used. For a neural network encoding this is sensible since any fully 

connected network can be defined by a sequence of real values (representing the 

connection weights and bias values). 

 

For this encoding scheme the number of input and output nodes is fixed and to make 

the DNA a fixed length a maximum number of hidden nodes is set prior to any 

program execution. 

3.1.2 Encoding scheme. 

The encoding of a network is made up of a sequence of genes each representing a 

potential node in the hidden layer. In turn each gene is made up of three sub parts, the 

active position, the incoming weights and the outgoing weights.  

3.1.2.1 The active position 

The active position is a single real value that determines whether the hidden node 

represented by the gene will be exhibited in the final network. This is a form of high 

level encoding with a non-negative value meaning this node will be present in the 

network and a negative value meaning this node will not be exhibited in the network. 

This is a very rough model of diploid behaviour in genetics where a section of DNA 

can be ‘turned off’ with the possibility that it will become useful in the future and 

‘turned back on’. The changing of the active position through mutation is the systems 
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way of performing topology optimisation. Though this value could have been 

represented in the gene string as a single bit, for the simplicity of the implementation 

it was assigned to a real value so that the whole chromosome consisted of only real 

values. 

3.1.2.2 The incoming weights 

The next section of the gene represents the incoming weights. The first of the values 

is the bias value for the node with the remaining values being the actual connection 

weights from the input layer to the hidden layer. The bias value was included with the 

incoming weights due to the implementation of how the bias values are used. This 

section of the gene is a low-level encoding where the values in the gene itself map 

directly onto the connection weight values. 

3.1.2.3 The outgoing weights 

The remaining values in each gene represent the weights of the connections from the 

hidden layer to the output layer. This section, as with the incoming weights, is a low-

level encoding where the DNA values are mapped directly to the connection weight 

values. 

3.1.2.4 Encoding scheme details 

For the general case of a network with I input nodes, a maximum of H hidden nodes 

and O output nodes the chromosome for a single network is encoded in a string of 

H(1+I+O) real number values (with the 1 representing the active position). 

 

It can be argued that the positioning of these three groups is important. For instance 

with the active position next to the inputs there seems to be more of a chance of the 

active position and inputs being passed to a child than the active position along with 

the outputs. This problem is irrelevant though with the use of a cyclic crossover 

operator so that the active position, inputs and outputs are effectively all neighbours to 

each other. This would not be the case with 4 or more distinct groups of information 

being represented by each gene. 

3.1.2.5 A small example 

The encoding for an example 2x3x2 network (2 inputs, a maximum of 3 hidden nodes 

and 2 outputs) is as shown in figure 3.1-1. With 2 functional inputs there are actually 
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3 inputs to the network with the first hard-wired to the value 1. The connection 

weights from this input to the hidden nodes represent the bias values thus giving a 

functionally equivalent implementation of how a bias value acts in a standard 

network. 

 O1

 I1

 I2

1

 0.6

 -0.6

 0.5

 -0.5

 -0.4

 0.2

 0.2

 -0.4

 0.3

Exhibited Not exhibited Exhibited

0.1 0.8 0.3 –0.4 0.5 –0.4      –0.2 0.6 0.2 0.8 –0.4 0.5      0.3 0.6 0.2 –0.6 –0.5 0.2

 0.8

 O2

Active position

Bias term Incoming
weights Outgoing

weights

 

6 Figure 3.1-1: An example of encoding for a 2x3x2 network. 

3.1.2.6 Other aspects of the encoding  

If the DNA for a potential network is initialised with random values then 

approximately half of the genes will have a non-negative value in the active position. 

This represents a network with only half the hidden nodes active and hence exhibited. 

Therefore if it desired that the network has H hidden nodes then the actual DNA 

should be defined to have a maximum number of hidden nodes equal to Hx2. In this 

way the average number of hidden nodes exhibited by each network initially will be 

H. 

 

The encoding scheme as it is uses a large degree of low level encoding. This method 

encodes weight values accurately but does not scale well to large networks where 

doubling the size of a network effectively doubles the size of the encoding.  
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The system also only defines fully connected networks with each hidden node 

connected to every input and output node. The system can effectively simulate a non-

connection by having zero-weighted values but this is not reflected in any fitness 

functions applied during simulation and as such is not treated as a benefit in any 

explicit way. 

3.2 Fitness Evaluation 

3.2.1 Simulation methods 

When evolving networks the only way to get accurate fitness values is to express the 

DNA in its phenotypic network form and run it through the task. This presents the 

major bottleneck in the simulation where a single simulation run may take some time. 

When the entire population must be simulated the program spends a large proportion 

of its time in simulating to gain fitness values. 

 

One approach to dealing with this bottleneck is annealing the simulation length. For 

example if the task is expected to take n turns in the simulation model we start with 

the simulation lasting n0 < n. and each epoch we increase n0 until it reaches n where 

the whole simulation will be performed. This gives an obvious speed up as the less 

time is spent simulating though it has some major drawbacks. Without a full 

simulation being applied members have an inaccurate fitness assigned to them. 

Individuals that are good at the first parts of the problem dominate the population too 

much in the early stages and the system has trouble learning the final stages of the 

task. Annealing was tried as an approach in the path learning example (see section 

4.3.1) 

 

Another problem with having to perform simulation is dealing with any random 

factors that may be present in the initial set up of the simulation model. An example 

of this is assigning random starting positions to entities. An entity tested with a ‘good’ 

starting position will usually get a better fitness than one with a ‘bad’ starting position 

even though they may have performed equally if given the same position to start with. 

The simplest and most effective approach to solving this problem is to perform 

multiple simulation runs and take some form of average. This of course takes much 
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longer but allocates fitness fairer, though it still does not guarantee a fair trial for each 

individual. 

3.2.2 Fitness rescaling 

Recall that fitness rescaling is converting the raw fitness values obtained through 

simulation to the scaled fitness values to be used in the selection process. 

There is a need for rescaling to deal with two diversity problems apparent in any 

genetic system.  

 

Firstly when evolution starts there are usually a few ‘lucky’ individuals whose DNA 

give them large fitness values compared to the others, even though they are not the 

ideal individuals. These extreme values often mean these members swamp the 

population in only a few epochs resulting in premature convergence. 

 

The second problem is when the system is converging on an optimal solution and the 

population consists of only high fitness valued individuals. In this case the system 

cannot accurately select the fitter members over the others and some rescaling is 

needed so that selection can properly determine the best individuals. 

  

Best results were gained using the ‘scale maximum relative to average approach’ (see 

section 2.1.2). Rescaling to make the maximum twice the average was found to give 

robust results agreeing with Goldberg (1989). Since this value implicitly determines 

the convergence rate of the system a lower value (towards 1.5) with a large population 

maintained reasonable diversity. Values too close to 1, indeed 1 itself, treat all 

members equally and hence are useless. 

 

Figures 3.2-1,3.2-2 show examples of this scaling using a number of different values 

for k. It is notable that this technique can map some fitnesses to negative values. 

Since these negative values will upset the standard roulette selection the algorithm 

needs to deal with these negative values. All values can have a constant added to them 

so the most negative value is scaled to zero or the algorithm can simply set the 

negative values to zero. The former is preferred since setting all negatives to zero 

treats these members unequally. 
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7 Figure 3.2-1: The effect of different scaling values on similar values 
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8 Figure 3.2-2: The effect of different scaling values with distinct peaks 

3.3 Selection 

Standard roulette selection was used in combination with population elitism. This 

produced a selection system that correctly selected proportional to fitness while 

guaranteeing that the best solution was maintained. For a population of N members 

the selection function was called at least N times. (Possibly more since in the case of 

crossover another parent needs to be chosen) 
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3.3.1 Naive roulette selection algorithm 

The naive approach to implementing roulette selection requires that only each fitness 

value and the sum of the fitness values is known.  

 

An individual is selected as follows… 

1. Select a random number, n,  from 0 to the fitness sum 

2. j = 0 

3. if n ≤ fitness[j] then the jth individual is selected and we are 

finished 

4. else n = n-fitness[j] and j=j+1 

5. go to 3. 

3.3.2 Improved guessing roulette selection algorithm 

A guessing approach developed requires a selection array constructed in the following 

way… 

 select[0] = fitness[0] 

 select[j] = fitness[j] + select[j-1]  1≤j≤N 

 

The selected individual will be member j where select[j-1] < n ≤ select[j] (except for 

the boundary case of n ≤ select[0]), all that is needed is to find the correct value of j. 

This is done by making a guess of what j should be and refining the guess 

 

This time the algorithm is as follows 

1. select a random number, n, from 0 to fitness total 

2. if n < select[0] we choose member 0    //lower boundary condition 

3. if n > select[N-1] we choose member N  //upper boundary condition 

4. guess j = n / average fitness value 

5. if select[j-1] < n ≤ select[j] we choose member j and finish 

6. if n > select[j] then j=j+1 and go to 5. 

7. j = j-1 and go to 5. 

 

This approach has the advantage of a great deal of speed up. Even though the select 

array must be created it needs only be done once for each epoch where as the actual 

selection will be performed N times.  
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3.3.3 A comparison 

Figure 3.3-1 shows the time taken for each selection method executed a thousand 

times on a population with a thousand individuals. 
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9 Figure 3.3-1: A comparison of the times needed for different selection techniques 

It can be seen the naive approach is of order (n2) where as the guessing technique 

performs better with a performance of order (n) 

3.3.4 Elitism and Pair-wise elitism  

Since selection is still an essentially random process it is possible that the fittest 

individual in any population may be lost simply by not being chosen. Recall that 

elitism is the act of taking the best member of a population and copying it without 

changes to the next generation. Without some form of elitism the population is not 

guaranteed to converge, either on an optimal solution or otherwise. 

 

Pair-wise elitism is a further refinement developed for this project to further direct 

convergence. In the pair-wise system a new member is created as normal by both 

selection and the genetic operators to fill each position in the new generation. If the 

fitness of the new individual is less than the member who previously occupied that 

position then the new member is discarded and the previous member is replaced. 

Pairwise elitism was shown to give good diversity and slower premature convergence 

on some types of problems (see section 4.3.2) 

 

The pairwise approach also guarantees that the average fitness of the overall 

population will convergence on the elite fitness. Since both of these elitism techniques 

have potential side effects on the evolutionary system they have associated with them 
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probabilities that decide whether they are applied each epoch. (Eg. If the elitism 

probability defined is 0.6 then elitism will be performed during 60% of the 

generations) 

3.4 Selective genetic operators 

3.4.1 General comments 

The three genetic operators implemented were crossover, mutation and inversion. 

Since the encoding has such a specialised form it was decided that these operators 

should be tailored for this specific encoding. 

 

The nature of the genetic methodology does not require this to be the case though all 

information that is general to the problem domain and does not bias solutions helps 

speed the evolution. 

 

These genetic operators define each position in the chromosome to be in of one of 

several categories. When choosing a position within the chromosome (eg. a location 

for crossover when performing crossover) each category has an associated probability 

assigned so that some places are more likely to be chosen than others. 

3.4.2 Weighted values for crossover position selection 

Intuitively it was decided that there are two main ways of recombining two networks 

to construct a new network using crossover.  

 

The first is to exchange hidden nodes and this is reflected by defining a probability for 

the position between genes on the chromosome.14 

 

The second is to exchange incoming and outgoing weights between hidden nodes. 

This is reflected again by defining a probability for the gene position where the output 

values start. 

 

                                                
14 ie Between hidden node information on the DNA 
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Finally of course there must be a chance that a crossover point can occur anywhere 

since this is the strength of the underlying evolutionary principle of crossover. For the 

simplicity of the implementation it was coded so that in the third case it was possible 

to choose a position from case one (between nodes) or case two (between incoming 

and outgoing weight information) making the three possibilities not mutually 

exclusive. 

3.4.2.1 An example of possible crossover positions 

In the case of a network with 2 inputs, 3 hidden nodes and 3 outputs a chromosome is 

of the form ABIIOOOABIIOOOABIIOOO15. Figure 3.4-1 shows the three possible 

positions then for crossover.  

 

Case 1: crossover location between nodes

Case 2: crossover location between incoming and outgoing weights

Case 3: crossover location anywhere

A B I I O O O A B I I O O O A B I I O O O

A B I I O O O A B I I O O O A B I I O O O

A B I I O O O A B I I O O O A B I I O O O

 

10 Figure 3.4-1: Possible choices of the location of a crossover point 

 

Each of the three positions has associated with it a relative probability say Cnode, 

Cweight and Canywhere. If Ctotal is defined as Cnode + Cweight + Canywhere then the 

probabilities of each occuring is Cnode/Ctotal, Cweight/Ctotal and Canywhere/Ctotal 

respectively. Once one type has been chosen by these probabilities it is used to 

determine the offset within a randomly chosen gene on the chromosome. 

                                                
15 A-node active position, B-bias term, I-incoming weight, O-outgoing weight 
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3.4.3 Weighted values for mutation position selection  

Weighted probabilities were also assigned to different positions on the chromosome 

for the choice of the position where mutation could occur. Again these were chosen to 

reflect the different attributes that the positions represent. Two types of position were 

chosen; firstly the active position and secondly the positions of weight values 

(including the bias term). Since the changing of an active position effects the network 

much more than the changing of a weight the relative probability of active position 

mutation was assigned much lower than that of a weight value. The algorithm for 

deciding where mutation occurs is the same as that used in the case of crossover. First 

a total is calculated and used to determine which type of position the mutation will 

occur at (active or weight position). Once this is determined it is used to calculate the 

offset in a random gene of the chromosome. 

3.4.4 Inversion positions 

Inversion was applied on the scope of whole nodes so that the functionality of the 

network remained the same. It was believed that inversion at the level of an individual 

connection weight would be too destructive and hence serve no purpose. Inversion 

even though it brings out problems dealing with competing conventions was still 

included to increase diversity and allow the possibility of evolving networks with 

multiple instances of the same hidden node. Inversion was assigned the lowest 

probability of occurring so that some stability was retained in terms of a nodes 

position in the chromosome.  

3.5 Population Management 

3.5.1 The concept of sub-populations and migration 

The problem of pre-mature convergence with any evolutionary strategy is reduced by 

somehow maintaining population diversity. One means of maintaining this diversity is 

to split each population up into a number of distinct sub-populations so that a 

dominant individual in a sub population can not effect the whole population. However 

if these sub-populations are keep distinct then the global search power of the system is 

lost. Migration is the act of moving a number of individuals between the sub-

populations  
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3.5.2 Migration implementation 

Migration is performed with a predefined constant frequency. If migration occurs too 

frequently then the diversity of keeping sub-populations is lost. On the other hand if it 

occurs not frequently enough then each sub-population will converge on separate 

values. The number of individuals involved in a migration is a predefined constant, 

usually a small fraction of the sub-population size. 

 

Each time migration occurs a number of individuals are chosen from each sub-

population to be moved to the next16 sub-population.  

 

The individuals that are chosen for migration must be located in the same position in 

the sub-populations so that members are not lost. This concept is best explained with 

the following two examples. 

 

Consider a system of 24 individuals with 3 sub-populations, each consisting of 8 

members and a migration size of 3 individuals. Figure 3.5-1 describes the two 

possibilities for choosing the members who will be migrated.  

 

The left-hand side shows the result from choosing a single random section of the 

population and performing the migration with each sub-population using this single 

section. As can be seen all members are retained with those in present in the section 

change their sub-population membership.  

 

The right-hand side describes the result of choosing a unique section for migration in 

each sub-population. In this case some members are lost when others are copied over 

them (denoted by bold lining in the final set of the right hand side). In the same way 

some members under this scheme have a second copy of themselves created in the 

population. Since this loss of members occurs randomly, regardless of the fitness 

values of the members involved, it should be avoided and the left hand approach 

adopted. 

 

                                                
16 Cyclically next 
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Original populations

Positions differentPositions the same

 

11 Figure 3.5-1: Migrating with and without a single subsection 

3.5.3 Introducing completely random members 

To further maintain diversity in each sub-population a completely new random 

individual can be introduced each epoch with a predefined percentage chance. To 

cause the minimum disruption to the population this new individual should take the 

place of the member with the lowest fitness. This concept can be thought of roughly 

as a mutation operator working on the whole population since the role of a mutation 

operator is to introduce new material into the system. 

3.6 Incorporating Back Propagation 

3.6.1 How it can be useful 

As previously stated back propagation is useful as a fine tuning technique when the 

genetic system has converged. It can also be useful near the start of a simulation to 

direct the evolution towards a desired type of solution. Such usage though introduces 

human bias into the system which should be avoided whenever possible. 

3.6.2 Why back propagation was avoided 

Back propagation is only useful when exact solutions are already known. Since one 

point of this project was to apply evolutionary techniques where such exact solutions 

are unknown it was avoided, even though it has strengths when dealing with neural 

network architectures. 
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3.6.3 Benefits of not using back propagation 

Back propagation uses differentiation of the transfer function to determine error 

magnitude information. It is thus required that the transfer function is continuous. If 

back propagation is not to be used then a continuous transfer function is not required. 

Simpler functions such as a standard step function can then be used. Of course back 

propagation is applicable only to feed forward architectures and by avoiding it 

completely more freedom is allowed when evolving the topology. 



Co-evolution of cooperative behaviour 

 43

4 Results without communication 

As the code was developed a number of test cases were implemented. All cases 

included evolving neural networks with the obtained results giving feedback for 

further refinement of the algorithms and code implementation. The first cases 

described in this section tested the details of the problems focusing on using one 

population and evolving for tasks requiring only single entities. Communication 

results are detailed in the next chapter. 

4.1 Data prediction 

The simplest and most common application of neural networks is the learning of a 

simple data set. With the initial framework prepared for the network architecture a test 

case of learning a random data series was trialed. 

 

A data set of 10 elements was randomly defined associating 5 random inputs with 5 

random outputs where these values varied from +1 to -1. A single population was 

maintained with a crossover probability of 0.7 and mutation rate of 0.01. Inversion at 

this stage had not been implemented. Fitness was first defined as the sum of the mean 

square error. Figure 4.1-1 shows the results from a evolution of 30,000 epoches. Since 

the system makes a great improvement in the first few hundred epoches figure 4.1-2 

shows the same graph from epoch 3000 to epoch 30000 to increase clarity. 
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12 Figure 4.1-1: Evolving data series prediction, MSE fitness 1 
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13 Figure 4.1-2: Evolving data series prediction, MSE fitness 2 

In can be seen that, as expected, the networks with the most hidden nodes performed 

the best. 

 

Next the fitness was defined as the mean square error result multiplied by the MSE by 

the number of hidden nodes exhibited in the network. Results such as figure 4.1-3, 

again showing only epoches 3000 to 30000, show the rewarding of networks with less 

nodes though they perform the worse. 
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14 Figure 4.1-3: Evolving data series prediction, MSE x #hidden fitness 

 

Even with this ability to somewhat define a need for a small number of nodes the 

evolutionary system could not improve much past a mean square error of 0.1. With 

only 10 values in the data series varying between +1 and –1 this is not a very accurate 

result. This is an example where the evolutionary system has been able to quickly 

give an approximate solution without being able to fine tune. 
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4.2 Straight line movement 

The first test case of an actual controller was the evolution of a simple straight-line 

walker. A single entity controller was evolved in a single population for the task of 

maximising the distance travelled in 200 turns.  

 

As inputs the controller received a series of random vectors of length five. The values 

were random but predetermined so that on each execution of a simulation an entity 

would receive the same data series. 

 

With outputs being a decision to turn left, turn right or walk forward it is simple to 

determine the perfect entity for this task is one that always walks forward. The fitness 

function was simply then the distance travelled after the 200 turns.  
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15 Figure 4.2-1: Evolution of a simple straight-line walker 

 

Figure 4.2-1 shows the average values of three simulation executions. A population 

size of five was used with a mutation rate of 0.01 and crossover rate of 0.7. A 

maximum number of four hidden nodes were used. Again by this stage inversion was 

has still not be implemented. 
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Since it is desirable to reward a low number of hidden nodes the simulation was 

further refined to have the fitness values divided by the number of exhibited hidden 

nodes. Figure 4.2-2 shows the average of three runs with the same values for 

population size and mutation and crossover rates. For each population a perfect 

walker was evolved before epoch 20 though it took longer to further evolve the 

networks to use a lower number of hidden nodes.  
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16 Figure 4.2-2: Evolution of a simple straight-line walker rewarding fewer hidden 

nodes 

 

Two plateaus are apparent in the graph. The first is from epoch 13 to epoch 23 where 

two of the three runs have evolved a perfect walker with 2 hidden nodes. The third 

run took longer to evolve to this degree and as a result this plateau is just under 10017. 

The second longer plateau from epoch 30 to epoch 53 is the result of two of the runs 

evolving the perfect walker using only one hidden node. All three had finally evolved 

the perfect walker by epoch 60 with only one hidden node. 

 

This example though it shows good results in terms of the evolutionary system, is 

somewhat contrived in terms of the networks. The solution for this problem is to 

always walk forwards, ie give a high output on the forward output node and low 

values on the turn left and turn right output nodes. Quite often with a random weights 

defined for a network one hidden node will dominate all the other nodes in the layer 

                                                
17 100 being the perfect score for a network with two hidden nodes. 
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resulting in one single output node firing constantly. This was apparent with one 

simulation run where a perfect walker was present in the first random population 

4.3 Path navigation 

4.3.1 Navigating a simple path 

For a more complex version of evolving a walker the problem was changed to an 

entity having to navigate along a simple path. This time the inputs were the 

coordinates of the entity (x and y) and the direction faced (in discrete multiplies of 90 

degrees). Outputs defined the decision to turn left, turn right and to move straight 

ahead. The entities had no direct knowledge of the path with fitness calculated as a 

function of the amount of path covered in a given fixed amount of time. The path can 

be thought of as being on a black and white grid with the black squares defining the 

path. 

 

The first simplest fitness function tested was defined as rewarding one point towards 

the fitness for each black square traversed. To ensure that the same piece of the path 

can not be counted twice every time a black square was covered it was changed to 

become white. 
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17 Figure 4.3-1: A good and bad attempt at navigating a simple path 

 

This fitness function works but is rather discontinuous. For example the two possible 

walks shown for a simple path in figure 4.3-118 are both allocated the same fitness 

under this function even though the first is obviously a better solution. 

 

                                                
18 S-start of path, E-end of path 
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This presents a good example of being able to put prior knowledge of the problem 

into the evolutionary system, in this case to produce a more continuous fitness 

function. By grey scaling the grid with extra grey squares that represent partial fitness 

points the fitness function can more accurately rate potential solutions. The path can 

then be of the form shown in figure 4.3-2. Now fitness is assigned by allocating points 

based on how dark the square covered is. This concept can even be extended to define 

outer regions to represent negative values so that going in the wrong direction can be 

penalised. 

 

S

E

 

18 Figure 4.3-2: Grey scaling the path for a more continuos fitness function 

 

The evolutionary system was able to evolve a solution for traversing the path as well 

as bringing out an interesting trait in the fitness function that had been previously 

unthought of. Figure 4.3-3 shows the elite and average member information for a 

single evolved population of 30 members. 
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19 Figure 4.3-3: The evolution of a simple path follower 
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A perfect navigator is evolved by epoch 30 but it can be noted that an individual was 

eventually evolved that gained more than 100% on a single trial. This is a result of the 

fixed amount of turns given to traverse the path being more than what was required. 

This combined with the grey scaling that was applied for a smoother fitness function 

gave the opportunity for some individuals to slightly ‘cheat’ as shown in figure 4.3-4. 

A good example of greedy optimisation. 
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20 Figure 4.3-4: Path followed by the elite member evolved 

 

The number of hidden nodes evolved for this simple path averaged at just over four, 

while the entities that solved the path normally usually had two hidden nodes. These 

figures roughly correspond to the number of turns needed for completing the path. 

 

Annealing of the simulation length was then tested with the relationship between the 

simulation run length and the current epoch described by figure 4.3-5. Note that the 

length flattens at 16, the time needed to traverse the entire path.  
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21 Figure 4.3-5: The relationship between epoch number and simulation length 
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Figures 4.3-6 and 4.3-7 show the comparisons between using this annealing technique 

and allowing each epoch to run for a full term. Again these graphs represent the 

average of three complete program executions. The annealing approach took 

approximately 40% of the time to execute though it took longer to evolve with both 

trials eventually evolved a perfect member. In can be seen though that all diversity 

was lost in the annealed case and as such the simulation relied only on mutation to 

better the population. 
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22 Figure 4.3-6: Evolution of a path follower with annealed simulation time 
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23 Figure 4.3-7: Evolution of a path follower with fixed simulation time 

4.3.2 Navigating a more complex path 

As a further test of the evolutionary system the path was extended to a more complex 

design and the facility for pairwise elitism was implemented. Figure 4.3-8 shows the 

more complex path used for testing without showing the grey scaled smoothing that 

was used as before. A single population of thirty members was maintained with 

crossover and mutation probabilities defined as for the simpler path example.  
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24 Figure 4.3-8: A more complex path 

 

Figure 4.3-9 shows the average evolution of the elite member from three runs using 

no elitism, normal elitism and pairwise elitism. The pairwise approach performed well 

in this task converging faster on the optimal path navigator. 
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25 Figure 4.3-9: Comparisons of different elitism techniques with the complex path 

 

The pairwise approach also maintained greater diversity in the population compared 

to the normal elitism approach. Figure 4.3-10 shows the average from three runs using 

pairwise elitism. It demonstrates how the elite member’s fitness is kept almost a 

constant value greater than that of the average fitness, indicating a reasonable level of 

diversity throughout the evolution of the population. 
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26 Figure 4.3-10: Evolution of a path follower using pairwise elitism 

 

Figure 4.3-11 shows the average of three runs using only normal elitism. It can be 

seen that most of the diversity is lost, in this case around epoch 20. Any 

improvements in the elite member once this diversity is lost are a result of the 

mutation operator. 
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27 Figure 4.3-11: Evolution of a path follower using normal elitism 

4.4 Vision 

4.4.1 Vision Implementation details 

A simple vision system was developed as a means of representing more realistic 

simulation models to mimic what would actually be used in real world applications. 

The provision for vision also allows another form of communication if entities have 

the ability to change the colour they display to other entities. 
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Though vision was developed it was not part of the major test case, explained in 

section 5.3, due to the time restrictions of the overall project. Evolutionary learning 

results were obtained that required vision but not using colour changing as a form of 

communication. 

 

Vision was implemented by assigning an entity a field of view and a number of 

segments within the field of view referred to as ‘eyes’. With the direction of the entity 

known it can be calculated whether other objects in the simulation model are visible 

and, if so, which eye would ‘view’ the object. A mapping can then be defined from 

what is seen by the eyes to a number of inputs for a network.  

For example with 3 colour components being used to define the possible colour of an 

object and 4 eyes within the field of view 12 inputs are needed (one for each colour 

component within each eye). The signal that an eye sees is also scaled relative to the 

distance to the viewed object to simulate depth cueing. 

 

An example of a possible case of vision is shown in figure 4.4-1 

 

 

28 Figure 4.4-1: Vision interpretation example 
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4.4.2 Turning to the red pole 

The vision system was tested with the task of turning towards a red object in a room 

containing other objects of different colours, in this case two green poles, a blue pole 

and a purple pole (red and blue). The colour of an object was defined in terms of 3 

colour components (corresponding to red, green and blue).  

 

The controller for the network used fifteen inputs for the 5 eyes with 3 colour 

components and 3 outputs for turn left, turn right and don’t turn at all. The field of 

view was 90 degrees with fitness defined as a function of the angle between the 

direction the entity is facing and the angle to the red pole. This angle was calculated 

each turn and summed over the entire simulation to give one fitness value. Since it 

was required that low values of this angle represented a good behaviour the fitness 

was inverted when the simulation was completed. 

 

To incorporate some degree of non-determinism the entity started a constant distance 

from the red pole but with a direction defined within +/- 40 degrees of facing it. This 

ensured that the red pole was within the field of view of the entity at the beginning of 

the simulation. Since this starting angle changed each entity was tested 4 times with 

an average performance considered. 

 

Figure 4.4-2 shows the average of three executions of the evolution for learning this 

task. A single population of 30 members was maintained with the evolution running 

for a total of 15 epochs and each entity being given 20 turns per trial. 
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29 Figure 4.4-2: Evolution of an entity using vision to turn towards a target object 

 

Convergence occurred with the elite member able to turn towards the red pole in each 

simulation. Even though the entity had the ability to not turn in almost all simulations 

the evolved entity turned to face the red pole and then repeated oscillating between 

turning left and right. It is hypothesised that this behaviour can be attributed to the 

fact that the system was trained to in some cases turn left towards the pole and in 

other cases turn right. Hence the outputs strengths for turning left and right were 

much stronger then that of not turning. Once the entity had turned left19 to the red pole 

then the strength of turning left became less and the turning right signal became 

dominant. Once the entity had turned right the signal for turning left again became the 

most dominant and the entity turned back, oscillating between the two. 

4.4.3 Moving to the red pole 

To force the system out of this oscillation process the system was changed. The not- 

turning decision was replaced by the decision to instead walk forward with the fitness 

changed to be a function of the distance from the red pole (to be minimised so again 

the distance summed over all epochs was inverted). This time the system was unable 

to evolve a performer for the task. 

 

Figure 4.4-3 shows an average of 3 runs for learning this task with a population size 

of 100 members and an evolution time of 40 generations. Though the graph shows 

                                                
19 Without loss of generality. 
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convergence of the average it can be seen the elite member improves very little with 

the evolved behaviour simply always walking forward. This is a prime example of 

how pre-mature convergence means it is possible for sub standard members in the 

initial population to be able to dominate. In this case the elite members were members 

with extremely high connections to the walk forward output resulting in the constant 

behaviour of moving forward. With the entity facing in generally the correct direction 

walking forward gave a high enough fitness so that the entities trying to learn to turn 

as well as moving forward were unable to beat those who only walked forward. 
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30 Figure 4.4-3: Evolution of an entity using vision to walk towards a target object 
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5 Results with communication 

5.1 Hearing facilities 

The most intuitive way to implement communication between distinct networks is to 

reserve a number of nodes in the input and output layers for the purpose of 

communication. A number of issues arise from the concept of using communication 

dealing mainly with the nature of the simulation model. For example if one member 

makes a broadcast, which of the others in the simulation receive it? If two members 

are to broadcast at the same time how are the messages resolved to the one set of 

inputs? Also with the simulation occurring with discrete time steps only one entity 

can be considered to be moving at any time, bringing up questions dealing with when 

other entities hear the broadcast. 

 

Communication was implemented by using a temporary buffer in the world. Since 

only quite simple models were tested this buffer effectively allowed one entity to hear 

the broadcast made by the previous entity that had moved. This allows only 

communication from one entity to one other entity but was not further refined since it 

was all that was required. 

5.2 Migration testing 

Migration was implemented as specified before (section 3.5.2) with a number of sub-

populations maintained and parameters defined for migration frequency and migration 

amount. Migration was performed cyclically to remove any favouring of centrally 

positioned individuals. 
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As a test of the migration system and how it could improve diversity a simple 

homogenous communication model was developed. An entity had two copies cloned 

and placed pseudo randomly20 in the same virtual environment. Inputs to the 

controller were its current position and a message of length two from the other clone. 

Outputs were reserved for the decision to move21 and for broadcasting a message to 

the other clone. With the task being for the two clones to move together the only way 

of achieving a high fitness without explicit knowledge of each others position was for 

the two to broadcast to each other some function of their own location22.  

 

The first trials performed could not evolve sensible behaviours due to a small fault in 

the simulation model. It is interesting to note the error though as another example of 

greedy optimisation of a fitness function giving an unexpected behaviour. When first 

trialed the elite behaviour, evolved in less than 10 epochs, was simply for both clones 

to move always towards the east23. With both entities moving the same direction and 

hence maintaining the same distance apart, it was unsure how this was given a high 

fitness. The problem lied in the size of the simulated world. It turned out that an entity 

was able to reach the boundary of the world in the number of moves allocated to it for 

each simulation regardless of where it randomly started. When an entity reached the 

edge they were kept there instead of wrapping around. Both then learned to simply 

move to the right wall and become stuck there, relatively close to each other and 

hence obtaining a high fitness. Yet another example of sub-standard random 

individuals at the beginning of an evolution dominated the population early. 

Increasing the size of the simulation world solved this problem for use in later 

examples. 

 

Three sub-populations, each consisting of 100 members, were maintained for the next 

trial. Firstly an execution was performed that included no migration between the three 

                                                
20 Randomly positioned around each other so that the distance at the start of the simulation was 

constant. This ensured there that each entity had an equal start while still retaining some degree of non-

determinism in the model. 
21 In this case being the 4 directions north, south, east and west 
22 Though it turns out this was not the case! 
23 Though without loss of generality the observed behaviour could have been to move any direction. 



Co-evolution of cooperative behaviour 

 59

populations, described by figure 5.2-1 As can be seen all three populations converged 

at around the same time with a similar fitness for the elite member. 
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31 Figure 5.2-1: Evolving three sub-populations without migration 

 

The simulation was then run again with a migration this time being applied. The 

migration rate was chosen to be each 20 epochs since convergence occurred at around 

this time in the previous test. Each migration moved 5 individuals cyclically choosing 

all the same numbered members so that none where unfairly lost (as discussed in 

section 3.5.2). Figure 5.2-2 shows the result from an execution with the vertical lines 

placed corresponding to the epochs when migration occurred. It can be seen that the 

migration proved beneficial each time it was applied noting that before each migration 

instance each sub-population had reached a stable state. It also gave a higher overall 

converged value with each population having the same elite members fitness (and it 

turns out the same elite member as expected).  
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32 Figure 5.2-2: Evolving three sub-populations with migration 
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Even though having migration gave a better result it was unsure how much was 

gained from migration explicitly. In the case without migration each member only had 

it’s own sub-population of 100 to breed with. When migration is incorporated the 

breeding population can be considered to be all 300 members24. A further test was 

then constructed that tested one single population of 300 individuals instead of 100 to 

see what difference a larger population had on this test problem. Figure 5.2-3 is the 

result of this evolution and has interesting implications. As expected it performed 

better than the single populations of 100 members in approximately the same number 

of epochs but did not outperform the instances of maintaining the separate sub-

populations in the same time frame of 100 epochs. For this problem then it shows that 

maintaining sub-populations can outperform a single population the size of the sub-

populations combined. 
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33 Figure 5.2-3: Evolving all three sub-populations as one single population 

 

Though this example shows how migration can work well it still did not evolve a 

behaviour in the individuals that was expected. Though the expected results were that 

the entities would evolve a means of broadcasting to each other some function of their 

location, the entities actually paid little attention to the message passing. Instead a 

system was evolved where the entity controller learnt to just move towards one 

location. Since both entities present are clones then both move to the same location 

                                                
24 Though a member only has the chance to breed with the whole population if it is involved with each 

migration instance. 
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reducing the distance apart and hence satisfying the requirements of the fitness 

function. Once again this is example of an unexpected behaviour due to the extremely 

greedy nature of the evolutionary paradigm along with a loosely defined fitness 

function. 

5.3 Major test case model description  

For a major test case a game of  “follow the leader” was chosen. This simulation 

game includes two or more entities, one of which is the ‘leader’ with the others being 

‘followers’. The goal of the game is that the followers must all move towards the 

position of the leader25. This model is similar in nature to the previous example but 

uses two distinct types of individuals that require different behaviours. It was hoped 

that this distinction would this time force a need for communication as opposed to 

both just moving to the one position. 

 

All entities were again made aware of their global position in the simulated world and 

as before had no explicit knowledge of the position of any other entities. Two nodes 

in the input and output layers were reserved for the purpose of communication 

between entities. This amount was chosen to correspond to the two coordinates used 

to determine the position of an entity. One possible solution for using this 

communication could then be to assign one message position for relaying the details 

of each coordinate. Inversion was implemented at this time though without specific 

data gathered on the effect of inversion it is unsure of the effect inversion had. 

5.4 The homogenous approach 

The homogenous approach uses a single population for evolving controllers that learn 

the task of being both a leader and a follower. The population is split into a number of 

sub-populations with a migration system used. Since both the behaviour for a leader 

and a follower needs to be learnt there needs be provision in the input and output 

layers of each controller for the requirements of both tasks. Along with this there is 

required some means of informing the network which role it should play.  

                                                
25 Due to time restraints the simulation was only tested using a leader that remained stationary 

throughout a simulation execution. For this reason perhaps “go to the leader” would have been a more 

accurate name. 
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The inputs required were then… 

• 1 node for specifying whether this entity should act as a leader or follower. 

This was implemented by hard wiring a signal of 1 to leader controllers 

and a signal of 0 to follower controllers. 

• 2 nodes for representing the position of the entity. With the size of the 

world having co-ordinates ranging from 0 to 1. Both entities needed to 

make use of these signals. The leader needed to map them in some way to 

the outputs reserved for messages and the follower needed to use this 

along with the incoming message to decide in which direction to move. 

• 2 nodes for the actual receiving of messages. Since the follower only used 

these the leader had them hard wired to zero26. 

 

The outputs required were… 

• 4 for the possible decisions to move ‘north’, ‘east’, ‘south’ and ‘west’. 

Since the leader was not implemented to move these signals were ignored 

by leader controllers. 

• 2 nodes for the broadcasting of messages. This time these nodes are only 

used by the leader controllers and ignored by the follower controllers. 

 

Testing of the homogenous type of controller was relativity straightforward. Two 

clones were constructed and placed in a simulated environment with one being 

assigned to act as the leader and the other designated as the follower. 

 

Fitness was defined as the distance between the leader and follower summed over 

each turn of a simulation run. Again as this value needed to be minimised the 

complete sum was inverted. 

 

                                                
26 A possible extension of the problem here could be to treat these as normal input of the message 

signal so that the leader would have to leader to ignore them. 
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Note that in this case creating multiple instances of the follower in the simulation 

model can improve the accuracy of testing of the follower role. With multiple 

followers in different positions a better representation of how the follower works can 

be obtained. Multiple followers are also easy to incorporate into the fitness function 

by summing the distance from the leader to each follower. 

5.4.1 Homogeneous evolution results 

The initial tested simulation used a single population divided into 5 groups of 30 

individuals. A crossover rate of 0.8 was defined with a mutation rate of 0.01 and 

inversion rate of 0.001. Unfortunately a number of tests all showed the system was 

unable to evolve a system of communication between the leader and the follower even 

though it displayed normal, albeit slow, improvement and convergence of elite 

members and average member fitness values. Even still an interesting behaviour was 

observed where the overall elite member from a number of program executions 

ignored all communication but managed to evolve followers that moved generally 

towards the centre of the simulated world. Again this shows a case of the system not 

being able to evolve the desired result but still being able to define a behaviour that 

satisfied the fitness function. 

 

It was decided one key factor that caused the system to fail was the difference in 

complexity of the networks required for a leader and a follower. Where as the leader 

ideally must just repeat its position, the follower needs to interpret its position as well 

as the message from the leader and decide on a direction to move. This is made 

especially difficult for the follower since while it is evolving the leader also is 

evolving and hence initially gives garbage values as its message to the follower. 

 

Figure 5.4-1 shows the decisions by the elite follower on how to move. This figure 

was obtained by placing the entity evolved in various positions on a grid and for each 

position placing the leader in 20 random positions. All arrows show the decision made 

with black arrows indicating a move towards the centre and the light grey arrows 

indicating a move away from the centre. A majority of black arrows indicates that the 

behaviour evolved was to move towards the centre of the grid which is the effective 

average position of the leader given a number of random placements. 
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34 Figure 5.4-1: The movement decision of a follower 

5.5 The heterogenous approach 

In this case the model task was unchanged but separate populations were maintained 

for the roles of leader and follower. Each population was again broken into sub-

populations to maintain diversity with migration used between sub-populations of the 

same population (ie no breeding between leaders and followers) 

 

Recall that the heterogenous approach has a number of advantages and disadvantages 

when applied to a team problem. 

5.5.1 Population management 

The major advantage is that the complexity of a single network is reduced. In the 

homogeneous case of ‘follow the leader’ it was required that each single member had 

to learn both the tasks of being a leader and a follower. By using a heterogenous 

approach we evolve networks that are more specialised for the simple tasks of being 

only a leader and only a follower. By maintaining separate populations we also gain 

control over the relative time spent evolving each distinct type of team member. For 

example in the case of ‘follow the leader’ a large population of followers can be 

maintained to reflect the need for more time to be spent on them since they require 

more complex networks. 

 

Unfortunately there are associated disadvantages with using heterogenous evolution. 

As stated before (section 2.5.1) there are problems with the selection of the members 

to make up a team and also the allocation of fitness calculated for each attempt at the 

task. 
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5.5.2 Team selection 

Recall that when using team based problems determining the fitness of an individual 

requires an entire team. Testing a single member thus requires that other individuals 

be chosen. The result of the fitness calculation then becomes dependent on the ability 

of the other team members, not just the ability of the member being tested. This 

brings up the possibility of a good entity being assigned a bad fitness just because it 

had poorly performing team members. Two ways to overcome this problem have been 

tried with varying results defined as follows…  

5.5.2.1 Elite team completion 

One approach is to complete the team with the relevant elite members from each 

population. This can be on the scale of an entire population, for example if testing a 

follower then complete the team by adding the overall elite member from the leader 

population. In this case since each member is tested only with specific other members, 

namely the elite members, it was found this technique converged quickly on a sub-

optimal solution, mainly due to a lack of diversity of the teams constructed. 

Alternatively we can add a slight random element by choosing to complete the team 

with the elite member of a random sub-population of the leader population. This gave 

more diverse results in the case where there were enough sub-populations but 

included a completely random event being the selection of which sub-population to 

use. As each sub-population converged this technique became effectively the same as 

selecting the overall elite member of the entire population. 

5.5.2.2 Non-deterministic random team completion 

For a more non-deterministic team we can use the standard selection method applied 

normally to each sub-population to choose members to complete the team. Since this 

allows the possibility of every member having a chance to be in each team27 it should 

be performed several times for each test with an average taken. 

5.5.3 Heterogenous evolution results 

It was found that this approach had trouble using the communication to complete the 

task. 

 

                                                
27 Proportional to its fitness relative to the other members of its population. 



Co-evolution of cooperative behaviour 

 66

Two types of behaviours were observed as… 

1. The followers ignored the output of the leader and moved again to 

approximately the middle position. When this happened it was the case that 

one type of follower was dominant early on and the leaders had trouble 

working with the proper followers in evolving a communication. This is 

similar to the example of evolution described in section 5.2. 

2. The followers and leaders only learnt to express one coordinate in the two 

decision slots. The followers moved to obtain the same value as the leader in 

one coordinate but not the other. 

 

An example of the output from a leader is shown in figure 5.5-1. Taking the elite 

leader evolved and testing the output it gave from various positions on a grid 

generated these figures. The figures have the x and y axes representing the position of 

the leader and the z-axis representing the output given. The left shows the values 

generated on the first output communication node and the right shows the values from 

the second output communication node.  
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35 Figure 5.5-1: Communication output of the leader network 

 

It was expected that each output nodes would be allocated to a separate co-ordinate 

though it can be seen this is not the case. 

 

No behaviours were observed where communication was learnt accurately for both 

co-ordinates. Extending the number of slots reserved for the message from 2 to 3 

slowed the evolution but still gave no examples of good communication. A more 
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accurate fitness function needs to be developed along with a more complex simulation 

environment specialised for this problem. 

 

These results are strongly co-evolutionary in the sense that combinations of leaders 

and followers from different executions can not perform together. This is due to the 

functionally equivalent communications evolved that are incompatible across 

different executions.  
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6 Conclusions and further work 

It seems that the results gained were strong in the aspects general to all evolutionary 

techniques (such as migration as a means of maintaining diversity). However the 

aspects of the project dealing with the evolution of communication did not perform as 

well as was initially expected. 

 

It was the aim of the project to develop a system as generic as possible, applicable to a 

wide number of communication applications. It was initially considered important to 

be able to develop a communication system for a problem without having to input 

explicit knowledge of how the communication would be performed and reward only 

in terms of performance. It seems though that desired behaviours were obtained only 

from problem examples using a very precise fitness function. Such a complex fitness 

function in many ways outweighs that fact that minimal input is required towards how 

the communication would act and hence how behaviours should be rewarded. 

 

Any such simulation system relies on complexity being apparent in either the fitness 

function or the simulation model. Most of the problems studied use an extremely 

simple simulation model and hence required a complex fitness function so individuals 

in a population could be correctly and fairly graded against each other. It is believed 

that moving the complexity of the problem from the fitness function to the simulation 

model would give results where correct behaviours were evolved from more simple 

fitness functions. The one case where good results were obtained from a very simple 

fitness function was in the case of applying vision where the simulation model was 

quite complex. 

 

The idea of having minimal input into how the communication system will work 

works though is unrealistic in any real world application. Evolutionary techniques 

most definitely benefit from having general problem specific knowledge as part of the 

system (such as the selective positioning genetic operators, useless in any other 

application not working on the type of networks developed for this project). In 

hindsight it is believed that better and more complex results could have been obtained 

by allowing some provision for entering details of the desired communication system 
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to be used. This could be in terms of using some form of back-propagation to ‘steer’ 

the evolution in the correct direction or perhaps by abstracting to common higher 

level communication ideas such as ‘turn towards your left’ or ‘move towards me’. 

 

Though neural networks worked a means of providing an object for the evolutionary 

system to work upon it seems they could have been refined more to work with the 

system, not just refining the system to work with the networks. Most results gave non-

standard network designs where knowledge was stored in terms of usually of one 

hidden node per problem aspect instead of being distributed across the entire network 

topology. This is to be expected since crossover implicitly requires that all knowledge 

is in distinct areas so it can isolated and combined. 

 

In general it is felt that the project had many successes and a number of possible 

extensions and aspects of possible further work. 

1. Firstly the complexity of the simulation model needs to be extended to relieve 

the pressure for the need for a overly precise fitness function. Since it has 

already been implemented and tested vision would be a good concept to 

incorporate into a system that requires communication.  

2. Evolutionary techniques are also strong in adapting solutions to keep up with a 

dynamically changing model. A number of aspects with the communication 

and overall evolutionary system could be researched in terms of dynamic 

problems where the communication system could not be static. 

3. The neural network implementation needs to be refined so that it is more 

specially suited to the strong and weak points of the evolutionary system. It 

could also include further complexity of possible network designs to 

incorporate multiple hidden layers, non fully connected architectures and 

recurrent links. 

4. More input can be added by incorporating some means of back propagation as 

a means of directing the evolution. In this way individuals evolved from one 

execution could perform and make teams with individuals from other 

evolution executions. This is feasible in simple problems where we can outline 

the desired communication but in more complex problems we may not be able 

to define where we need to ‘steer’ the evolution to. 
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The lighter side of a thesis 

 

 

On the lighter side of things this graph shows the evolution of a thesis, namely this 

one! This is a good chance for people to catch me out by checking whether I was 

actually doing work on whatever night! Thanks for reading this far at least… 
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Glossary 

Chromosome DNA collection of genes that is the encoding the evolutionary 
system uses. Defines exactly a corresponding network. 

Clones Members of a team whose controllers were generated from the 
single common DNA resulting in identical same deterministic 
behaviour 
 

Entity An agent controlled by a network defined by a chromosome that acts 
in a simulation to define a fitness for the corresponding 
chromosome. 
 

Epoch An instance of a single breeding within a population. 
 

Gene Subsection of a chromosome that defines an individual node in the 
hidden layer. 
 

Genotype The representation on an individual in terms of a chromosome 
structure. This representation includes excessive information stored 
in hidden node information that is not exhibited 
 

Individual See entity 
 

Member A single DNA’s association with a specific population or sub-
population. Membership can change across sub-populations due to 
migration but not from population to population. Eg A certain DNA 
is a member of sub-population 3. 
 

Phenotype The representation of a chromosome in terms of the neural network 
it represents. It is the phenotypic representation that is tested for the 
allocation of fitness values 
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Appendix A: Program Code 

Main program 

/* sim manager v5.2  
  heterogenous popn model for 'follow the leader'  
   
 
 Matthew Kelcey 
 Honours Research Code. 
*/ 
 
#include "world3.h" 
#include "popn.h" 
#include <iostream.h> //screen output  
#include <fstream.h>  //file handling 
#include <time.h>  //for determining a 'random' seed 
 
//evolution constants 
const int numOfGens=200;  //#generations for evolution 
const int outputFreq=1;  //frequency of outputing fitness info to file 
//migration specific constants 
const int migrationRate=100; //rate which migration occurs,  
        //every migrationRate 
epoches. 
 
////////////////// 
//global variables 
int i,j,s,p;     //global loop variables 
World *earth;    //where entities are tested 
Popn *leaders,*followers; //populations (including sub popns) 
 
void main(void) { 
 //make the world 
 earth = new World(); 
 
 ////create the initial populations 
 //leader popn has 4 sub-populations each with 50 members 
 //migration transfers 5 individuals at a time 
 int leaderIn = 1+gps; 
 int leaderOut = messLength; 
 //the square root of the produce of #input and #output 
 //nodes is a good starting number to have. *2 since 
 //on average only half will be active 
 int leaderHidden = (int)(2*sqrt(leaderIn*leaderOut)); 
 leaders = new Popn(earth,leaderIn,leaderHidden,leaderOut,4,50,5); 
 //read in from file a previously evolved population 
 //leaders->readFrom("leaders.pop"); 
 
 //follower popn has 4 sub-populations each with 100 members 
 //migration transfers 10 individuals at a time  
 int follIn = 1+gps+messLength; 
 int follOut = decisions; //for NSEW 
 int follHidden = (int)(2*sqrt(follIn*follOut)); 
 followers = new Popn(earth,follIn,follHidden,follOut,4,100,10); 
 //read in from file a previously evolved population 
 //followers->readFrom(follow.pop"); 
 
 //randomize function 
 srand(455); 
  
 //prepare log files for leader and followers evolved fitness values 
 ofstream lFitValues("loutput.txt",ios::out); 
 ofstream fFitValues("foutput.txt",ios::out); 
  
 //do the cycle of time 
 for (int time=0; time<numOfGens; time++) { 
  int sub; //subpopulation loop variable 
  cout << time << " of " << numOfGens << "  "  
    << ((double)time/numOfGens)*100 << "% " << endl; 
  //breed leaders 
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  for (sub=0; sub<leaders->numSubPopns; sub++) { 
   leaders->breedNextGen(sub); 
   if (time%outputFreq==0) 
    lFitValues << leaders->averageRawFitness(sub) << ","  
       << leaders->highestRawFitness(sub) 
<< ","; 
  }; //sub 
  //breed followers 
  for (sub=0; sub<followers->numSubPopns; sub++) { 
   followers->breedNextGen(sub); 
   if (time%outputFreq==0) 
    fFitValues << followers->averageRawFitness(sub) << 
","  
       << followers-
>highestRawFitness(sub) << ","; 
  }; //sub 
   
  //if writing to logfile this epoch need to do endl character now 
  if (time%outputFreq==0) { 
   lFitValues << endl; 
   fFitValues << endl; 
  }; 
 
  //migrate if its time to do so 
  if (time%migrationRate==0) { 
   cout << "performing migration" << endl; 
   leaders->migrate(); 
   followers->migrate(); 
  }; 
 }; 
 
 //if required save these populations to file for recalling later 
 //leaders->writeTo("leaders.pop"); 
 //followers->writeTo("followers.pop"); 
 
 // kill populations 
 delete leaders; 
 delete followers; 
}; 
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World header file 

/* WORLD3.H 
 world class for simulating in for entity fitness evaluation 
 specific for leader and follower problem 
  
 Matthew Kelcey 
 Honours Research Code 
*/ 
 
#ifndef WORLD3_H 
#define WORLD3_H 
 
#include "pos.h" 
#include "virtudna.h" 
#include "entity.h" 
 
//world constants 
const int numSimRuns = 5; //#times dna tested per trial (used when there is  
        //some undeterministic 
element) 
const int simLength = 10; //life time of the simulation 
const int sizeX = 1;   //keep between 0 and 1 to make inputs to networks  
const int sizeY = 1;    //easy to handle 
 
class World { 
public: 
 World(); 
 ~World(); 
 
 void display(void);  //display all info about all entities 
  
 void addEntity(eEntityType, vDNA*); 
  
 //run the simulation and return an obtained fitness value 
 double runSimulation(int, //display moves flag 
             int, //display entity info flag 
          int); //write to file flag 
 
private: 
 //vars 
 Entity *pLeader,*pFollower; 
 double *worldNoises;   //array to hold world noise information 
         //dynamic since may 
have no elements 
 double calculatedFitness; 
}; 
 
#endif 
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World class definition 

/* WORLD3.CPP 
 adapted from simworld.cpp 
 
 Matthew Kelcey 
 Honours Research Code 
*/ 
 
#include "world3.h" 
#include "entity.h" 
#include <iostream.h> //for debugging 
#include <fstream.h> 
#include <string.h> 
#include <math.h> 
#include <assert.h> 
 
//con and decon 
World::World(void) { 
 //make and then clear noises array out 
 worldNoises = new double[messLength]; 
 for (int i=0; i<messLength; i++) 
  worldNoises[i]=(double)0; 
  
 //allocate space for leader and follower 
 pLeader = new Entity(); 
 pFollower = new Entity(); 
 
 //open leaderfile for the first time to flush it 
 //prepare file for displaying output of leader 
 ofstream leaderOutput; 
 leaderOutput.open("leader.txt",ios::out); 
 ofstream followerOutput; 
 followerOutput.open("follower.txt",ios::out); 
}; //world 
 
 
World::~World(void) { 
 //free some memory 
 delete [] worldNoises; 
 delete pLeader; 
 delete pFollower; 
}; //~world 
 
void World::display(void) { 
 //invoke display on leader and follower 
 pLeader->display(); 
 pFollower->display(); 
 
 //wait for user 
 cout << "hit an int "; 
 int reply; cin >> reply; 
}; //display 
 
 
double doubleAbs(double x) { 
 if (x>=0) return x; 
  else return -x; 
}; 
 
void World::addEntity(eEntityType type, vDNA *pDna) { 
 if (type==leader) 
  pLeader->constructFromDNA(pDna); 
 else //type==follower 
  pFollower->constructFromDNA(pDna); 
}; 
 
double World::runSimulation(int fDispMoves,  
       int fDispEntInfo, 
       int fWriteToFile) { 
 /* 
 simulation description 
  first animate is the leader,  
   knows position, hears nothing, doesn't move  
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   does broacast though (what should map to its position) 
  all other animates 
   knows position, hears leaders output 
   moves (hopefully towards leader!), doesn't broadcast 
 */ 
 
 //reset the calculated fitness for this simulation run 
 calculatedFitness=0; 
  
 //wish to repeat whole process a number of times to obtain  
 //a fairer representation. 
 
 for (int repeat=0; repeat<numSimRuns; repeat++) { 
  //position the entities randomly, but equally spaced 
  Position lPos, fPos; //l=leader, f=follower 
  bool validPositions=false; 
  while (!validPositions) { 
   //choose leader position as random in sqaure 
   lPos.set(randDouble(1),randDouble(1));  
   //choose follower position as offset from leader by distance 0.5 
   //with stepsize of 0.05 should travel 0.5 in 10 steps 
   double angle=randDouble(twoPi); 
   fPos.set(lPos.x+0.5*cos(angle),lPos.y+0.5*sin(angle)); 
   //check if the position of the follower is valid 
   if (fPos.x>0 && fPos.x<1 && fPos.y>0 && fPos.y<1) 
    validPositions=true; 
  }; //while !validPositions 
  pLeader  ->relocate(lPos,0); 
  pFollower->relocate(fPos,0); 
 
  //run the simulation once with these positions 
  for (int time=0; time<simLength; time++) { 
   //move the entities and check for wall collision 
   pLeader->move(leader,worldNoises); 
   if (pLeader->loc.x<0)  pLeader->loc.x=0; 
   if (pLeader->loc.y<0)  pLeader->loc.y=0; 
   if (pLeader->loc.x>maxX) pLeader->loc.x=maxX; 
   if (pLeader->loc.y>maxY) pLeader->loc.y=maxY; 
   pFollower->move(follower,worldNoises); 
   if (pFollower->loc.x<0)  pFollower->loc.x=0; 
   if (pFollower->loc.y<0)  pFollower->loc.y=0; 
   if (pFollower->loc.x>maxX) pFollower->loc.x=maxX; 
   if (pFollower->loc.y>maxY) pFollower->loc.y=maxY; 
   //update fitness value 
   calculatedFitness += pLeader->loc.distTo(pFollower->loc); 
  }; //time loop 
 }; //repeat loop 
 
 return (double)calculatedFitness/numSimRuns; 
}; //runSimulation 
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Population header file 

/* Popn.h: population class 
 includes 
  preforming of evolutionary steps  
   selection 
   crossover, mutation and inversion of dna strings 
   fitness scaling 
 
 Matthew Kelcey 
 Honours Research Code. 
*/ 
 
#ifndef POPN_H 
#define POPN_H 
 
#include "virtuDNA.h" 
#include "world3.h" 
 
//simulation prob chances  (values 0-1, 0-never, 0.5 50%, 2-always) 
const double introRandom=0.3; //add random member to popn each gen, to replace worst 
const double pairwiseElitism=2; //each next gen must beat the value in the slot 
const double elitism=2;   //highest entity is saved in each 
generation 
 
//fitness calculation things 
const double scaler=2;   //after rescaling fitness,  
         //maxFitness = 
scaler*averageFitness  
 
class Popn  { 
public: 
 //constructor and destructor 
 Popn(World*,  //need to know where the population is 
   int,int,int, //ins, maxhiddens and outs of popn members 
   int,int,int); //numSubPopns, subPopnSize, migrationNumber; 
 ~Popn(); 
  
 //interface functions 
 void display(int);   //invoke display on all vDNA members,  
         //0=all info, 
1=fitness only  
 vDNA* fetch(int,int);  //return with a ptr to the ith member of  
         //the jth subpopn 
 vDNA* fetchElite(int);  //return the elite of a subpopn  
 void breedNextGen(int);  //perform breeding on sth subpopulation 
 void migrate(void);   //migrate individuals cyclically 
 vDNA* select(void);   //select a member from the whole 
population 
 void testAllMembers(int); //test all members of a subpopn 
 void calcRawFitness (vDNA*);//calculate the fitness of a popn member 
  
 void dispElite(int); //display info on elite member of given subpopn 
 
 double averageRawFitness(int); //int is which sub popn 
 double highestRawFitness(int); //int is which sub popn 
  
 //streaming functions (return success or otherwise) 
 int writeTo(char*);  //write the popn to a file 
 int readFrom(char*);  //read the popn from a file 
 
 //variables that once were constants 
 int subPopnSize; 
 int numSubPopns; 
 int migrationNumber; 
 
private: 
 //popn variables, most dynamically defined once population  
 //sizes known gathered constuctor. 
 World *pHomePlanet;   //where this populatoin is (needed for 
testing)  
 double **selectArray;  //selection arrays for each subpopn 
 double *globalSelectArray; //the gloabl selection array  
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 int ins,maxHiddens,outs,dnaLength; //dna variables for members in this 
population 
 int *eliteMember; //array of sub-population elite members 
 vDNA ***pDna;  //actual members in the population 
 vDNA **pTempPopn; //need a temp array for holding nextgen members  
      //and for usage in migration 
  

int fNeedGlobalRecalc; //flag to indicate that a subpopn has changed its  
        //selection array and so 
global array must be updated        
    
 
 //private functions needed to be called only by member functions. 
 vDNA* select(int);     //select a member from 
subpopulation s 
 void calcFitnessStats(Fitness,int); //determine elite member for subpopn 
 void prepareSelectionArray(int); //needed for selection of members for a 
subpopn 
}; 
 
#endif  
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Population class definition 

/* popn.cpp: implementation of the popn class. 
  
 Matthew Kelcey 
 Honours Research Code 
*/ 
 
#include "popn.h" 
#include <iostream.h> 
#include <fstream.h> 
#include <assert.h> 
 
void Popn::dispElite(int i) { 
 pDna[i][eliteMember[i]]->display(0); 
}; 
 
/*procedure for activation of a flag 
 chance=0    => always returns 0 
 chance=0.5  => returns 1 50% of the time 
 chance=2 => always returns 1 */ 
inline int active(double chance) { 
 return (randDouble(1)<chance); 
}; 
 
//return the average raw fitness of a specified sub population 
double Popn::averageRawFitness(int ws) { 
 double total=0; 
 for (int p=0; p<subPopnSize; p++) 
  total+=pDna[ws][p]->fitness[raw]; 
 return total/subPopnSize; 
}; 
 
//return the highest raw fitness of a specified sub population 
double Popn::highestRawFitness(int ws) { 
 int highest=0; 
 double highestRF=pDna[ws][0]->fitness[raw]; 
 for (int p=1; p<subPopnSize; p++) 
  if (pDna[ws][p]->fitness[raw] > highestRF) { 
   highest=p; 
   highestRF=pDna[ws][p]->fitness[raw]; 
  }; 
 return highestRF; 
}; 
 
//display the details of the DNA strings in the population 
void Popn::display(int disp) { //0=all info , 1=fitness values only 
 int s,p; 
 for (s=0; s<numSubPopns; s++) { 
  cout << "***" << s << "th subpopn" << endl; 
  for (p=0; p<subPopnSize; p++) { 
   cout << "member " << p << " of subpop " << s << endl; 
   pDna[s][p]->display(disp);  
  }; 
 }; 
 
 //heres the selection arrays 
 cout << "and the selection arrays are " << endl; 
 for (s=0; s<numSubPopns; s++) { 
  for (p=0; p<subPopnSize; p++) 
   cout << selectArray[s][p] << ","; 
  cout << endl; 
 }; 
}; 
 
//population constructor 
Popn::Popn(World *pWhichWorld, int ins_, int maxHiddens_, int outs_, 
    int numSub, int subSize, int migrationNumber) { 
 int s,p; //loop variables 
 
 //keep relevant values  
 ins = ins_; 
 maxHiddens = maxHiddens_; 
 outs = outs_; 
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 numSubPopns = numSub; 
 subPopnSize = subSize; 
 pHomePlanet = pWhichWorld; 
 //dna length used so often store it also 
 dnaLength = (1+ins+outs)*maxHiddens; 
 
 //construct the dynamic arrays needed for population management 
 //allocate space for elite member array 
 eliteMember = new int[numSubPopns]; 
 //allocate space for select array 
 selectArray = new double*[numSubPopns]; 
 for (s=0; s<numSubPopns; s++) 
  selectArray[s] = new double[subPopnSize]; 
 //allocate space for global selection array 
 globalSelectArray = new double[subPopnSize*numSubPopns]; 
 //allocate space for population dna pointers 
 pDna = new vDNA**[numSubPopns]; 
 for (s=0; s<numSubPopns; s++) 
  pDna[s] = new vDNA*[subPopnSize]; 
 //allocate space for temporary sub population 
 pTempPopn = new vDNA*[subPopnSize]; 
 
 //create the individual members 
 for (p=0; p<subPopnSize; p++) { 
  pTempPopn[p] = new vDNA(ins,maxHiddens,outs); 
  for (s=0; s<numSubPopns; s++)  
   pDna[s][p] = new vDNA(ins,maxHiddens,outs); 
 };   
 
 //test members of each subpopn to obtain initial fitness values 
 for (s=0; s<numSubPopns; s++) 
  testAllMembers(s); 
}; //con 
 
//destructor, need to free up heaps of dynamically defined memory 
Popn::~Popn()  { 
 int p,s; //loop variables 
  
 //kill all the members 
 for (p=0; p<subPopnSize; p++) { 
  delete pTempPopn[p]; 
  for (s=0; s<numSubPopns; s++)  
   delete pDna[s][p]; 
 }; 
 
 //remove all space reserved for dynamic arrays 
 delete [] eliteMember; 
 delete [] globalSelectArray; 
 delete [] pTempPopn; 
 for (s=0; s<numSubPopns; s++) { 
  delete [] selectArray[s]; 
  delete [] pDna[s]; 
 }; //s 
}; //destr 
 
 
//select a member from subpopulation s 
//if offset is nonzero then use this value instead of a random value 
//more intelligent selection rountine. O(n) for whole population selection 
vDNA* Popn::select(int whichSpecies) { //s 
 //choose the random position 
 double pos=randDouble(selectArray[whichSpecies][subPopnSize-1]);  
 
 //check for boundary cases,  
 //also ensures s[0] < p < s[n-2] 
 if (pos<=selectArray[whichSpecies][0])    
  return pDna[whichSpecies][0];    //the first member 
 if (pos>=selectArray[whichSpecies][subPopnSize-2])  
  return pDna[whichSpecies][subPopnSize-1]; //the last member 
  
 //make the inital guess at position, = position/average 
 int guess=(int)(pos/(selectArray[whichSpecies][subPopnSize-1] 
         
 /subPopnSize)); 
 
 //move until its found 
 while (1) { 
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  //check if the guess is now correct 
  if ((pos>selectArray[whichSpecies][guess-1])  
   && (pos<=selectArray[whichSpecies][guess]))  
   return pDna[whichSpecies][guess]; //found it! 
  //otherwise try guesing one way or the other 
  if (pos>selectArray[whichSpecies][guess])  
   guess++; //move to right one place 
  else 
   guess--; //move to left one place 
 }; //while 
}; 
 
/*/naive selection rountine, O(n*n) for whole population selection 
int oldRouletteSelect(double total, int whichSpecies) {  
 int which=0; 
 double where=randDouble(total); 
 while ((where>=pDna[which][whichSpecies]->fitness[scaled])  
    && (which<subPopnSize-1))  
  where-=pDna[which++][whichSpecies]->fitness[scaled]; 
 return which; 
}; //nothing 
*/ 
 
//select used outside the class by others 
//returns a random member from the entire population 
vDNA* Popn::select(void) { 
 ////simple naive approach  
 return select(randInt(numSubPopns)); 
}; 
 
//migrate starting at a random point.  
//(do modulo subPopnSize) to treat cyclically. 
void Popn::migrate(void) { 
 int i,j; //loop variables 
 int lower; //lower bound of migration range. 
 
 //choose lower bound; 
 lower = randInt(subPopnSize); 
 
 //remember the zeroth popn in a temp array 
 for (j=lower; j<lower+migrationNumber; j++)  
  pDna[0][j%subPopnSize]->copyInto(pTempPopn[j%subPopnSize]); 
 
 //create temporary popn for moving groups 
 //starting from 2nd popn (popn group 1) 
 for (i=1; i<numSubPopns; i++)  
  //move the ith popn into the i-1th population 
  for (j=lower; j<lower+migrationNumber; j++)  
   pDna[i][j%subPopnSize]->copyInto(pDna[i-1][j%subPopnSize]); 
 
 //move the zeroth group into the 'numSpecies'th popn 
 for (j=lower; j<lower+migrationNumber; j++) 
  pTempPopn[j%subPopnSize]-> 
    copyInto(pDna[numSubPopns-1][j%subPopnSize]); 
 
 //since members have been moved need to reevaluate  
 //the selection array after rescaling the fitness  
 //values for each subpopn 
 for (int s=0; s<numSubPopns; s++)  
  prepareSelectionArray(s); 
}; 
 
void Popn::calcRawFitness(vDNA *testee, eEntityType leaderOrFollower) { 
  
 //testee->fitness[raw]=(float)0; 
 
 // RUN SIMULATION 
 if (testee->numHiddens()==0) //invalid network 
  testee->fitness[raw]=0; 
 else { //valid network with one or more hidden nodes 
  //clear current fitness value 
  testee -> fitness[raw] = (float)0; 
  //add the testee as a leader or follower 
  pHomePlanet->addEntity(leaderOrFollower,testee)  
  //run the simulation a number of times, 
  //each time with a new patner 
  for (sim=0; sim<numSimRuns; sim++) { 
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   if (leaderOrFollower==leader) 
    pHomePlanet->addEntity(follower, some other member); 
   else 
    pHomePlanet->addEntity(leader, some other member); 
   //award all fitness to the testee 
   testee -> fitness[raw] += pHomePlanet->runSimulation(0,0,0); 
  }; //for sim  
  //average fitness value 
  testee -> fitness[raw] /= (double)numSimRuns; 
 }; //else 
 //*/ 
 
 /*/TRIVIAL TEST OF ONE INPUT 
 //MUST HAVE 4inputs AND 3outputs 
 Network *brain = new Network(testee); 
 double inputs[4] = {1,0.2,0.3,-0.3}; 
 double trueValues[3] = {0.5,-0.3,0.4}; 
 testee->fitness[raw] = brain->errorMagnitude(inputs,trueValues); 
 delete brain; 
 //*/ 
  
 /*/TEST BY ABILITY TO COPY INPUT STRING ON OUTPUT 
 testee->fitness[raw]=(float)0; 
 //make controller 
 Network *brain = new Network(testee); 
 //create arrays for testing 
 double *inputs = new double[testee->ins]; 
 double *trueValues = new double[testee->outs]; 
 inputs[0]=1; //for bias terms 
 //test simLength times 
 for (int t=0; t<simLength; t++) { 
  //create some random inputs 
  for (int i=1; i<ins; i++) { 
   inputs[i]=negPos(); 
   trueValues[i-1]=inputs[i]; 
  }; 
  //find errorMagnitude on these inputs 
  testee->fitness[raw]+=brain->errorMagnitude(inputs,trueValues); 
 }; 
 //invert fitness values (we want low errors to mean high fitness) 
 testee->fitness[raw]=1/testee->fitness[raw]; 
 //free memory 
 delete brain; 
 delete [] inputs; 
 delete [] trueValues; 
 //*/ 
 
 /*/TEST BY ALLOCATING FITNESS AS SUM OF DNA STRING VALUES 
 testee->fitness[raw]=(float)0;  
 for (int i=0; i<dnaLength; i++) 
  testee->fitness[raw]+=testee->piece[i]; 
 //*/ 
 
 /*/TEST ON TIME SERIES ERROR MAGNITUDE 
 //reset old fitness value 
 testee->fitness[raw]=(float)0; 
 //make controller from dna 
 Network *controller = new Network(testee); 
 //test on simple time series 
 for (int i=0; i<seriesLength; i++)  
  controller->addToRaw(controller 
   ->errorMagnitude(seriesInputs[i],seriesTrueValues[i])); 
 //we require small fitness values indicate a fit individual 
 testee->fitness[raw]=1/testee->fitness[raw]; 
 cout << "fitness is " << testee->fitness[raw] << endl; 
 //free some memory 
 delete controller; 
 //*/ 
}; 
 
//first thing to do when all have been created 
void Popn::testAllMembers(int ws) { 
 cout << "testing all members of subpopn " << ws << endl; 
 for (int s=0; s<numSubPopns; s++) 
  for (int p=0; p<subPopnSize; p++) 
   calcRawFitness(pDna[s][p]); 
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 //prep selection array (including conversion from  
 //raw->scaled fitness values 
 prepareSelectionArray(ws); 
}; 
 
 
//need to ensure raw fitness values have been rescaled to scaled values 
void Popn::prepareSelectionArray(int ws) { 
 int p; 
 ////first need to convert raw values to scaled values 
  
 //need to check all values are non-negative 
 //if some are not rescale on the most negative value while  
 //retaining the correct level of proportionality 
 double mostNegative=0; //set to zero value to check against 
 for (p=0; p<subPopnSize; p++) { 
  if (pDna[ws][p]->fitness[raw]<mostNegative)  
   mostNegative=pDna[ws][p]->fitness[raw]; 
  //cout << "mn" << mostNegative << " "; 
 }; //p 
 if (mostNegative!=0) //ie value was set previously 
  for (p=0; p<subPopnSize; p++)  
   pDna[ws][p]->fitness[raw] -= mostNegative; 
 
 //find the average and highest value 
 double highestF = pDna[0][ws]->fitness[raw]; 
 double totalF   = highestF; //ie just first value 
 double averageF; 
 eliteMember[ws]=0; 
 
 //go through rest of the popn and get actual  
 //average and highest raw values 
 for (p=1; p<subPopnSize; p++) { 
  totalF += pDna[ws][p]->fitness[raw]; 
  //check if this ones the elite member 
  if (pDna[ws][p]->fitness[raw] > highestF) { 
   highestF = pDna[ws][p]->fitness[raw]; 
   eliteMember[ws]=p; 
  }; 
 }; 
 //obtain average from total 
 averageF = (double)totalF/subPopnSize;  
 
 //calculate constants 
 double slope=(scaler-1)*averageF/(highestF-averageF); 
 double constant=averageF*(highestF-scaler*averageF) 
         /(highestF-
averageF); 
 //need to keep tabs on negative values 
 //if any exist then shift all so all non-negative 
 double lowestNegValue=0; 
 //rescale all other values using constants 
 //checking for negative values 
 for (p=0; p<subPopnSize; p++) {  
   pDna[ws][p]->fitness[scaled] =  
     slope*pDna[ws][p]->fitness[raw]+constant; 
   //make sure none are negative due to scaling, otherwise  
   //roulette will fail 
   if (pDna[ws][p]->fitness[scaled]<0)  
    if (pDna[ws][p]->fitness[scaled]<lowestNegValue) 
     lowestNegValue=pDna[ws][p]->fitness[scaled]; 
 }; //for 
  
 //if there are negatives then shift all values  
 //to make the most negative zero 
 if (lowestNegValue!=0) //ie it has changed, by being set above  
  for (p=0; p<subPopnSize; p++)  
   pDna[ws][p]->fitness[scaled] -= lowestNegValue; 
 //note: even after rescaling the elite member will stay the same 
 
 //////then create actual selection array 
 //set first member to be first fitness value 
 selectArray[ws][0] = pDna[ws][0]->fitness[scaled]; 
 //allocate following ones as the sums 
 for (int i=1; i<subPopnSize; i++) 
  selectArray[ws][i] = selectArray[ws][i-1] +  
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        pDna[ws][i]-
>fitness[scaled]; 
 
 //since this selection array has changed will  
 //need to recalc the global selection array 
 fNeedGlobalRecalc=1; 
}; 
 
 
vDNA* Popn::fetch(int whichSpecies, int whichMember) { 
 return pDna[whichSpecies][whichMember]; 
}; 
vDNA* Popn::fetchElite(int whichSpecies) { 
 return pDna[whichSpecies][eliteMember[whichSpecies]]; 
}; 
 
 
//perform breeding on sth subpopulation 
void Popn::breedNextGen(int ws) { 
 vDNA *parent; 
 int p; //loop iter 
 int startFrom=0; //will start here if elite selection happens 
 
 //do elite member automatic inclusion 
 if (active(elitism)) { 
  pDna[ws][eliteMember[ws]]->copyInto(pTempPopn[0]); 
  startFrom=1; //don't want to copy over the new elite member 
 }; 
 
 //do the actual breeding of each member 
 for (p=startFrom; p<subPopnSize; p++) { 
  //select a parent member 
  parent = select(ws); 
  //copy it to the next gen 
  parent->copyInto(pTempPopn[p]); 
 
  //test for crossover & mutation 
  int fChanged=false; //need to keep since  
       //may need to reevaluate fitness 
  if (active(crossOverRate)) { 
   //crossover of parent and another selected parent 
   pTempPopn[p]->crossOver(parent,select(ws),2); 
   fChanged=true; 
  }; 
  if (active(mutationRate)) { 
   pTempPopn[p]->mutate(); 
   fChanged=true; 
  }; 
  if (active(inversionRate)) { 
   pTempPopn[p]->inversion(); 
   fChanged=true; 
  }; 
   
  //if its changed then reevaluate its fitness 
  if (fChanged)  
   calcRawFitness(pTempPopn[p]); 
   
  //do pairwise elitism tests 
  if (fChanged &&  
   active(pairwiseElitism) &&  
   (pTempPopn[p]->fitness[raw] < parent->fitness[raw])) 
    //replace old parent in this slot 
    parent->copyInto(pTempPopn[p]); 
 }; 
 
 //perform new random member inclusion to overwrite worse member 
 if (active(introRandom)) { 
  //find the worst member 
  int worst   = 0; //for now 
  double worstFitness = pTempPopn[0]->fitness[raw]; 
  for (p=1; p<subPopnSize; p++) 
   if (pTempPopn[p]->fitness[raw] < worstFitness) { 
    worst = p; 
    worstFitness = pTempPopn[p]->fitness[raw]; 
   };//if 
  //replace it with a new random dna 
  pTempPopn[worst]->randomizeValues(); 
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  //evaluate this new members fitness 
  calcRawFitness(pTempPopn[worst]); 
 }; 
 
 //copy next gen back to breeding pool 
 for (p=0; p<subPopnSize; p++) 
  pTempPopn[p]->copyInto(pDna[ws][p]); 
 
 //rescale fitness values and construct new selection array 
 prepareSelectionArray(ws); 
 
 //so at end of breeding epoch the selection array  
 //should be up to date (for use by other populations  
 //when asking to choose a new member) 
};  
 
//streaming 
int Popn::writeTo(char *fileName) { 
 //open the file for writing 
 ofstream output(fileName,ios::out); 
 if (!output) { 
  cout << "error opening " << fileName << " for writing" << endl; 
  return 0; 
 }; 
 //write some general popn info (used for checking) 
 output  << numSubPopns << " " << subPopnSize  
   << " " << dnaLength << " "; 
 //write all the members data out 
 for (int s=0; s<numSubPopns; s++) 
  for (int p=0; p<subPopnSize; p++) { 
   for (int l=0; l<dnaLength; l++) 
    output << pDna[s][p]->piece[l]<< " "; 
   output << pDna[s][p]->fitness[0] << " "; 
   output << pDna[s][p]->fitness[1] << " "; 
  }; 
 output << endl; 
 //if this far then success 
 return 1; 
}; 
 
int Popn::readFrom(char *fileName) { 
 //open the file for reading 
 ifstream input(fileName,ios::in); 
 if (!input) { 
  cout << "error opening " << fileName << " for reading" << endl; 
  return 0; 
 }; 
 //read in general popn info  
 int subpop,popsize,dnalen; 
 input >> subpop >> popsize >> dnalen; 
 //compare against runtime constants 
 if ((subpop!=numSubPopns)||(popsize!=subPopnSize) 
     ||(dnaLength!=dnalen)) { 
  cout << "error in file, differing constants" << endl; 
  cout << "numSubPopns :" << subpop   
     << " should be " << numSubPopns << endl; 
  cout << "subPopnSize :" << popsize  
     << " should be " << subPopnSize << endl; 
  cout << "dna length  :" << dnalen   
     << " should be " << dnaLength   << endl; 
  return 0; 
 }; 
 
 //read all the info in 
 for (int s=0; s<numSubPopns; s++) 
  for (int p=0; p<subPopnSize; p++) { 
   for (int l=0; l<dnaLength; l++)  
    input >> pDna[s][p]->piece[l]; 
   input >> pDna[s][p]->fitness[0]; 
   input >> pDna[s][p]->fitness[1]; 
  }; 
 
 //recreate the selection arrays 
 for (s=0; s<numSubPopns; s++) 
  prepareSelectionArray(s); 
 
 //if this far then success 
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 return 1; 
}; 
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Virtual DNA header file 

/* VIRTUDNA.H 
 by Matthew Kelcey 
 Honours Research Code. 
*/ 
 
#ifndef VIRTUDNA_H 
#define VIRTUDNA_H 
 
#include <stdlib.h> //for random 
#include <math.h> //for sqrt 
 
//dna length flags 
const int numEyes = 0;   // number of eyes, 0=no eyes 
const int numColourComps = 3; // number of colour componentes, RGB 
const int gps = 2;    // 2=xy coords, 0=no gps 
const int messLength = 2;  // length of output consider to be the  
        // message, 0=>no hearing 
const int decisions = 4;  // 4=>nsew, 3=>lrs 
 
////breeding constants  
//chance of mutation 
const float mutationRate = (float)0.01; 
//relative odds of swapping node active 
const int mutateActive = 1; 
//relative odds of changing a weight (includes bias terms) 
const int mutateWeight = 4; 
//this is the prob of a new value opposed to  
//gaussian changing given a mutation is occuring 
const float newValueOrGauss = (float)0.2;  
 
//chance of crossover  
const float crossOverRate = (float)0.8; 
//rel. odds of crossover point on active position 
const int xOverNodes = 3; 
//rel. odds of crossover point on first outgoing weight 
const int xOverInsOuts = 2; 
//rel. oods of crossover point anywhere (could be one of the above though) 
const int xOverAnywhere = 1; 
 
//chance of inversion 
//acts only on genes 
const float inversionRate = (float)0.001; 
 
//to return a random float between -1 & 1 
inline double negPos(void) { 
 return ((double)rand())/RAND_MAX*2-1; 
}; 
 
//return a random number between 0 and max (as a double) 
inline double randDouble(double max) { 
 return (double)(rand()*max/RAND_MAX); 
};  
 
//return an int from 0->max-1 
inline int randInt(int max) { 
 return rand()%max; 
}; 
 
enum Fitness {raw, scaled}; 
 
class vDNA { 
public: 
 //return how many hidden nodes this dna represents 
 int numHiddens(void); 
 //set all pieces to random values 
 void randomizeValues(void); 
 //defaultconstructor, dna sizes defined by constants 
 vDNA(int,int,int); //ins, maxHiddens, outs 
 //default decon. 
 ~vDNA(); 
 //copy con 
 vDNA(vDNA&); 
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 //debugging displayer ints are inputs and outputs (for formatting) 
 void display(int); //0=all, 1=just fitness values 
 //copier, why doesn't copycon work? 
 void copyInto(vDNA*); 
 //mutate the dna 
 int mutate(void); 
 //crossover things 
 int newCrossOverPoint(); //give a new crossover point 
 int crossOver(vDNA*, //other parent 
      vDNA*, //child 
      int);  //number of crossover points 
 //inversion functions 
 void swap(int,int); //swap two genes in strand 
 void inversion(void); 
 
 //variables 
 double *piece;  //actual weights array 
 double fitness[2]; //two fitness values, raw and scaled 
 int mutateTotal;//= mutateActive+(geneLength-1)*mutateWeight; 
 int xTotal;// = xOverNodes+xOverInsOuts+geneLength*xOverAnywhere; 
 int ins,maxHiddens,outs; 
 int geneLength,length; 
}; 
 
#endif 
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Virtual DNA class definition 

/* VIRTUDNA.CPP 
 by Matthew Kelcey 
 Honours Research Code. 
*/  
 
#include "virtudna.h" 
#include <iostream.h> //for debugging 
#include "math.h" 
 
//need this since the 'log' in gaussian dies when it gets a zero 
inline double spRand(void) { 
 double temp=randDouble((double)1); 
 if (temp!=0) 
  return temp; 
 else 
  return 0.000001; 
}; 
inline double newGaussian(double mean, float stdDev) { 
 return sqrt(-2.0 * log(spRand())) 
   *cos(randDouble((double)6.2831853072)) 
   *stdDev+mean; 
}; 
 
//return the number of hidden nodes this dna would have active 
int vDNA::numHiddens(void) { 
 int numHiddens=0; 
 for(int i=0; i<length; i+=geneLength)  
  //check active positions 
  numHiddens += (piece[i]>0); 
 return numHiddens; 
}; 
 
//nuke to randomise all values 
void vDNA::randomizeValues(void) { 
 //put random values in dna 
 for (int i=0; i<length; i++)  
  piece[i] = (float)(negPos()/2); 
 //zero fitness values 
 fitness[0] = fitness[1] = (float)0;  
}; 
 
//constructor 
vDNA::vDNA(int ins_, int maxHiddens_, int outs_) { 
 //remember constants  
 ins=ins_; 
 maxHiddens=maxHiddens_; 
 outs=outs_; 
 //work out a few values accessed often to optimise time 
 geneLength = ins+outs+1; 
 length = geneLength*maxHiddens; 
 mutateTotal = mutateActive+(geneLength-1)*mutateWeight; 
 xTotal = xOverNodes+xOverInsOuts+geneLength*xOverAnywhere; 
 //declare piece array and initialise it 
 piece = new double[length]; 
 randomizeValues(); 
}; 
 
//decon 
vDNA::~vDNA() { 
 //only need to deallocate space for piece array 
 delete [] piece; 
}; 
 
//copy functions 
vDNA::vDNA(vDNA &copy) { 
 //directly copy everything across 
 for (int i=0; i<length; i++) 
  piece[i] = copy.piece[i]; 
 fitness[0]=copy.fitness[0]; 
 fitness[1]=copy.fitness[1]; 
}; 
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void vDNA::copyInto(vDNA *pDestDna) { 
 for (int i=0; i<length; i++) 
  pDestDna->piece[i]=piece[i]; 
 pDestDna->fitness[0]=fitness[0]; 
 pDestDna->fitness[1]=fitness[1]; 
}; //copyInto 
 
//mutation 
int vDNA::mutate(void) { 
 //decide which gene to mutate 
 int gene = randInt(maxHiddens)*geneLength; 
 
 //decide which part of that gene to mutate and thus the offset 
 int offset; 
 int part = randInt(mutateTotal); 
 if (part<mutateActive) 
  //mutate active position 
  offset=0; 
 else //mutating a weight value 
  offset=1+randInt(ins+outs); 
 
 //decide on mutation type 
 if (randDouble((double)1)<newValueOrGauss)  
  { //use gaussian mutation 
   float stdDev=(float)0.1; 
   //then actually mutate 
   piece[gene+offset]= 
     (double)newGaussian(piece[gene+offset],stdDev); 
  } 
  else //whole new value 
   piece[gene+offset]=(double)negPos(); 
 
 //must return success, useful having return for testing 
 //mutation by returning mutation position when needed 
 return 1; 
}; //mutate 
 
//crossover things 
int vDNA::newCrossOverPoint(void) { 
 //choose which node to have crossover point on 
 int position = randInt(maxHiddens)*geneLength; 
 //decide where on that node it's going to be 
 int where = randInt(xTotal); 
 if (where<xOverNodes)  
  //crossover at active position 
  return position; 
 if (where<xOverNodes+xOverInsOuts)  
  //crossover at first outgoing weight 
  return position+ins+1; 
 //crossover anywhere 
 return position+randInt(geneLength); 
}; //newCrossOverPoint 
 
//breed based on crossover, int is number of crossover points 
int vDNA::crossOver(vDNA *parentA, vDNA *parentB, int numPoints) { 
 //make sure not too many crossover points! 
 if (numPoints>=length) 
  numPoints=length-1; 
  
 //work out distinct crossover points 
 int *crossOver = new int[numPoints]; //array for crossover points 
 crossOver[0] = randInt(length); 
 int which=1; //which crossover point we are deciding 
 while (which!=numPoints) { 
  //give a random value 
  crossOver[which] = newCrossOverPoint(); 
  //check if it's distinct from previous ones 
  int sameAs=false; //assume not same as any other  
       //yet and show otherwise 
  for (int j=0; j<which; j++)  
   if (crossOver[which]==crossOver[j])  
    sameAs=true; 
  //if its not the same go to chossing next one 
  if (!sameAs)  
   which++; 
 }; 
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 //define pChilds arrays 
 int parentAToChild = 1; //ie parentA giving gene to pChild A 
 for (int i=0; i<length; i++) { 
  //is this a crossover point? compare against all crossovers 
  int test=0; 
  while (test<numPoints) { 
   if (i==crossOver[test]) { 
    //swap which parent coming from 
    parentAToChild = !parentAToChild; 
    test=numPoints; 
   }; 
   test++; 
  }; 
 
  //transfer actual dna strand information 
  if (parentAToChild)  
   piece[i] = parentA->piece[i]; 
  else  //!parentAToChildA 
   piece[i] = parentB->piece[i]; 
 }; //for  
 
 //free memory 
 delete [] crossOver; 
 //came out ok 
 return 1; 
}; 
 
//inversion things 
//swap two genes, used during inversion 
void vDNA::swap(int a,int b) { 
 int i; //loop iterator 
 double *temp=new double [geneLength]; //for temp storage 
 //store gene 'a' temporarily 
 for (i=0; i<geneLength; i++) 
  temp[i]=piece[a*geneLength+i]; 
 //copy gene 'b' into gene 'a' 
 for (i=0; i<geneLength; i++) 
  piece[a*geneLength+i]=piece[b*geneLength+i]; 
 //copy temp stored gene into gene 'b' 
 for (i=0; i<geneLength; i++) 
  piece[b*geneLength+i]=temp[i]; 
 //free memory 
 delete [] temp; 
}; //swap 
 
//cyclic inversion 
void vDNA::inversion(void) { 
 //pick distinct inversion positions 
 int pt1=randInt(maxHiddens); 
 int pt2=pt1; //set equal to force following loop at least once 
 while (pt1==pt2)  
  pt2=randInt(maxHiddens);  
 //do actual inversion between pt1 & pt2 
 while (pt1!=pt2) { 
  //do one positions swap 
  swap(pt1,pt2); 
  //check to see if done by pts being within one of each other 
  //either nornally, or in the boundary case 
  if ((pt2-pt1==1)||(pt1-pt2==maxHiddens-1)) { 
   //force finish of loop 
   pt1=pt2; 
  } //if 
  else {  
   //not finished so move points closer, modulo maxHiddens 
   pt1++; if (pt1==maxHiddens) pt1=0;  
   pt2--; if (pt2<0)    pt2=maxHiddens-1; 
  }; //else 
 }; //while 
}; //inversion 
 
//for debuggging 
void vDNA::display(int w) { //w=0, display all, w=1 display only fitness values 
 if (w!=1)  
  for (int i=0; i<length; i++) { 
   cout << piece[i] << " "; 
   if ((i+1)%geneLength==0) cout << endl; 
  }; 



Co-evolution of cooperative behaviour 

 96

 
 cout << "rawFit=" << fitness[0] << " scaledFit=" << fitness[1] << " "; 
 cout << "numHiddens=" << numHiddens() << endl; 
 
 int y; cin >> y; 
}; //display 
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Position header and class definitions 

/* POS.H 
 data structure and procedures for 2d distances 
 Matthew Kelcey 
 Honours Research Code 
*/ 
 
#ifndef POS_H 
#define POS_H 
 
#include <math.h> //for sqrt 
#include <iostream.h> 
 
class Position { 
 friend ostream &operator<<(ostream &output, const Position &loc) { 
  cout << "(" << loc.x << "," << loc.y << ")"; 
  return output; 
 }; 
public: 
 Position() { x=y=(double)0; }; 
 Position(double nx, double ny) { x=nx; y=ny; }; 
 inline double distTo(Position other) { 
  return sqrt((x-other.x)*(x-other.x)+(y-other.y)*(y-other.y)); 
  }; 
 void set(double nx, double ny) { x=nx; y=ny; }; 
 double x,y; 
}; 
 
#endif 
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Entity header file 

/* ENTITY.H 
 structure for holding information about each entity 
 by Matthew Kelcey 
 Honours Research Code. 
*/ 
  
#ifndef ENTITY_H 
#define ENTITY_H 
 
#include "virtuDNA.h" 
#include "neural2.h"  
#include "pos.h" 
#include "colour.h" 
 
const double turnAngle = 0.1; //radians 
const double stepSize = 0.05; //size of world is 0->1  
         //(easier for scaling purposes) 
//entity vision constants 
const double pi = 3.14159265358; 
const double twoPi=pi*2; 
const double fieldOfView = (double)pi/2;//90deg 
const double gamma = 0.5; //1=normal brightness, <1 more, >1 less. 
const int fTracking = 1; //write vision to output vision.txt 
 
enum eDisplay {locationInfo,visionInfo}; //for displaying entity values 
enum eEntityType {leader, follower};  
 
 
/****************************************************************** 
 
grid is laid out as.... 
 
  0,0          maxX,0  l = acw 
       r = ccw  
        pi/2    
     pi       0    have to show eyes in reverse order. 
        3pi/2  
   
  0,maxY         maxX,maxY 
 
 ******************************************************************/ 
 
class Entity { 
public: 
 //construct with null values 
 Entity();     
 //default decon 
 ~Entity();    
 //default entity from dna 
 void constructFromDNA(vDNA*); 
 //init all values 
 void init(void); 
  
 //snapshot vision 
 void snapShotVision(Entity*); //give last entity in list 
 //listen for sounds 
 void listen(double[]); //noises from world 
 
 //calculate the sweep angle to another position 
 double sweepAngleTo(Position);  
 //get entity to think, then move, then return the 'move'  
 // eg 'n' (north) or 'l' (left) for possible displaying  
 char move(eEntityType, //denote whether leader or not 
     double[]);   //world noise array for passing messages 
 //display info on entity 
 void display(void);  //display all information 
 void display(eDisplay); //location=all location spec variables 
  
       //vision=just the vision 
  
 //put entity to a new location and give direction 
 void relocate(Position,double);  



Co-evolution of cooperative behaviour 

 99

 //change an entities colour 
 void changeColour(Colour); 
 //reset the raw fitness value 
 void resetFitness(void); 
 
 //entity variables 
 //eEntityType type;  //entity is animate or inanimate 
 Network *pController;  //controller 
 Entity *pNextEntity;  //used when applying vision calcs 
 Position loc;    //location 
 double direction;   //direction facing 
 Colour looks;    //colour of the entity 
 vDNA *pSourceDna;   //need this pointer to allocate fitness 
 //the following 3 are dynamically defined (since inanimates dont use them) 
 Colour *vision;    //what the entity can see  
 //these two are dynamic since messLength may =0 
 double *hearing;   //what the entity hears 
 double *voice;    //what the entity says 
}; 
#endif 
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Entity class definition 

/* ENTITY.CPP  
 class defn for entities 
 last modified 4/5 for initial writing 
*/ 
 
#include "entity.h" 
#include "fstream.h" 
#include <assert.h> 
#include <math.h>  //for sin & cos 
#include <iostream.h> //for debugging info 
 
void Entity::display(eDisplay locOrVision) { 
 if (locOrVision==locationInfo) { 
  cout << "entity is "; 
  if (pController==NULL) cout << "in"; 
  cout << "animate @" << loc  
    << " f:" << (double)direction  
    << " colour is " << looks << endl; 
 } 
 else {//do vision 
  cout << "can see "; 
  for (int i=numEyes-1; i>-1; i--)  
   cout << i << ":" << vision[i] << "  "; 
  if (numEyes==0) 
   cout << "nothing, this entity is blind"; 
  cout << endl; 
 
  //do hearing 
  cout << "can hear "; 
  for (i=0; i<messLength; i++) 
   cout << i << ":" << hearing[i] << " "; 
  if (messLength==0) 
   cout << "nothing, this entity is deaf"; 
  cout << endl; 
 }; //vision and hearing  
}; 
 
void Entity::display(void) { 
 display(locationInfo); 
 //dont bother with displaying vision for inanimates 
 if (pController!=NULL) { 
  display(visionInfo); 
  cout << "controller is " << pSourceDna->ins << "x"  
    << pSourceDna->numHiddens() << "("  
    << pSourceDna->maxHiddens << ")x"  
    << pSourceDna->outs << endl; 
 }; 
}; 
 
void Entity::init(void) { 
 loc.set(0,0); direction=0; 
 looks.set(0,0,0); int i; 
 //construct vision array for the entity 
 if (numEyes!=0) 
  vision = new Colour[numEyes]; 
 //make it see nothing 
 if (numEyes!=0) 
  for (i=0; i<numEyes; i++)  
   vision[i].reset(); 
 //construct hearing array 
 if (messLength!=0) { 
  hearing = new double[messLength]; 
  voice   = new double[messLength]; 
 }; //if 
 //make it hear nothing 
 if (messLength!=0) 
  for (i=0; i<messLength; i++) 
   hearing[i]=(double)0; 
 //not using vision for dont bother maintaining list 
 pNextEntity==NULL; 
}; 
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Entity::Entity(void) { 
 //no controller for this entity yet 
 pController = new Network(); 
 //no source dna yet either 
 pSourceDna = NULL; 
 //reset other values 
 init(); 
}; 
 
void Entity::constructFromDNA(vDNA *pDna) { 
 //make a controller from this dna 
 pController = new Network(pDna); 
 //remember where this dna came from 
 pSourceDna=pDna; 
 //ensure other values have been reset 
 init(); 
}; 
 
Entity::~Entity() { 
 //free up reserved memory space 
 delete pController; 
 //free vision array 
 if (numEyes!=0) 
  delete [] vision; 
 //and hearing array 
 if (messLength!=0) { 
  delete [] hearing; 
  delete [] voice; 
 }; 
}; 
 
//sweep angle function used in a few other places also` 
double Entity::sweepAngleTo(Position otherLoc) { 
 
 //store the relevant variables 
 double x1=loc.x; 
 double y1=loc.y; 
 double x2=otherLoc.x; 
 double y2=otherLoc.y; 
 
 //work out angle from axis between point 1 and 2 
 double tAngle; 
 //check for div by zero error 
 if (x2==x1) 
  if (y2<y1)  tAngle = -(double)pi/2; 
  else tAngle = (double)pi/2; 
 else  
  tAngle = atan((double)(y2-y1)/(x2-x1));  
 //quadrant 2 & 3 
 if (x2<x1)  tAngle+=pi; 
 //quadrant 4 
 if (tAngle<0) tAngle+=twoPi; 
 
 //work out relative sweep angle 
 tAngle-=direction; 
 if (tAngle<0)  tAngle+=twoPi; 
 if (tAngle>twoPi) tAngle-=twoPi; 
 
 return tAngle; 
}; 
 
void Entity::snapShotVision(Entity *pCompareEntity) { //pIter==pFirstEntity[inanimate] 
 //some needed variables 
 double halfFOV = (double)fieldOfView/2;  
 //RE int numInVision[numEyes]; //number entities in each view 
 int fFinished=false; //flag to decide when finished 
 
 //clear out num in vision array and clear vision 
 for (int i=0; i<numEyes; i++) { 
 //RE numInVision[i]=0; 
  vision[i].reset(); 
 }; 
 
 //compare with other entities in the entity list 
 while (!fFinished) {  
  //dont want to look at self 
  if (pCompareEntity!=this){  
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   //calculate the sweep angle to this entity we are comparing 
   double angle=sweepAngleTo(pCompareEntity->loc); 
 
   //check if its in the field of view 
   if (angle<halfFOV || angle>twoPi-halfFOV) {  
    //in view, but which eye? 
    //scale to -halfFOV -> halfFOV 
    if (angle>pi) angle-=twoPi;   
    //scale to 0->FOV (halfFOV-angle that is) 
    angle+=halfFOV; 
 
    //work out which eye its in then 
    int whichEye=(int)(angle/(double)(fieldOfView/numEyes));  
 
    //calc distance to the comparing entity 
    double dist = loc.distTo(pCompareEntity->loc) * gamma; 
     
    //add that sight to correct eye 
    vision[whichEye].red  
     +=(double)pCompareEntity->looks.red / dist; 
    vision[whichEye].green  
     +=(double)pCompareEntity->looks.green / dist; 
    vision[whichEye].blue  
     +=(double)pCompareEntity->looks.blue / dist; 
    //keep record of how many in this view 
    //RE numInVision[whichEye]++; 
   } //if in view 
  }; //if not looking at self 
   
  //even newer version for just the one list 
  if (pCompareEntity->pNextEntity!=NULL) 
   pCompareEntity = pCompareEntity->pNextEntity; 
  else 
   fFinished=true; 
 }; //while not finished flag loop 
 
 //get ready to append if needed 
 ofstream visionFile ("vision.txt",ios::app); 
 
 if (fTracking) 
  visionFile << numEyes << " " << endl; 
 
 //average out vision values and put result in entity storage 
 for (i=0; i<numEyes; i++)  
  //average out what was seen in each eye 
  if (numInVision[i]!=0) { 
   vision[i].red /=(double)numInVision[i]; 
   vision[i].green /=(double)numInVision[i]; 
   vision[i].blue /=(double)numInVision[i]; 
  }; 
   
  //if tracking then send to file vision.txt 
  if (fTracking) 
   visionFile << vision[i].red << " "  
      << vision[i].green << " "  
      << vision[i].blue << " " << endl; 
}; 
 
void Entity::listen(double sounds[]) { 
 //copy sounds into hearing 
 for (int i=0; i<messLength; i++) 
  hearing[i]=sounds[i]; 
}; 
 
char Entity::move(eEntityType type, double worldNoises[]) { 
 double *inputs  = new double[pSourceDna->ins]; 
 double *outputs = new double[pSourceDna->outs]; 
 int i; //general loop variable 
 char returnVal; 
 
 //need to prepare inputs for controller 
 int upto=0; //which part of the input we are defining 
 //set first position to be 1 for bias calcs 
 inputs[upto++] = 1; 
 //add positional information, if entity has a global  
 //positioning system (gps set=2) 
 if (gps!=0) { 
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  inputs[upto++] = loc.x; 
  inputs[upto++] = loc.y; 
 }; 
 //add vision information, if the entity has vision 
 if (numEyes!=0) { 
  //transfer to input array 
  for (i=0; i<numEyes; i++) { 
   inputs[upto++] = vision[i].red; 
   inputs[upto++] = vision[i].green; 
   inputs[upto++] = vision[i].blue; 
  }; //for 
 }; //if 
 //add noises, if the entity is not deaf and is a follower 
 if ((type==follower) && (messLength!=0)) { 
  for (i=0; i<messLength; i++)  
   inputs[upto++]=hearing[i]; 
 }; 
 
 //should have filled up all the slots now 
 assert(upto==pSourceDna->ins);  
 
 //think about things 
 pController->propogate(inputs,outputs); 
 
 //extract from output the noise it made 
 //but only if this is the leader 
 if (type==leader) 
  for (i=0; i<messLength; i++) 
   worldNoises[i]=outputs[i]; 
 
 //if it is the first entity (the leader) exit now 
 if (type==leader) { 
  delete [] inputs; 
  delete [] outputs; 
  return 'x'; //x representing no move 
 }; 
 
 //find which is highest of the outputs 
 double highestValue=outputs[0]; 
 int highest=0; 
 for (i=1; i<decisions; i++) { 
  if (outputs[i]>highestValue) { 
   highestValue=outputs[i]; 
   highest=i; 
  }; //if 
 }; //for 
 
 //make that actual move, depends on how many decisions there are 
 if (decisions==3) { //left, right and straight ahead 
  switch(highest) { 
  case 0: //turn left 
   direction += turnAngle; 
   returnVal = 'l'; 
   break; 
  case 1: //turn right 
   direction -= turnAngle; 
   returnVal = 'r'; 
   break; 
  case 2: //go straight 
   //not yet implemented 
   exit(666); 
   returnVal = 's'; 
   break; 
  }; 
 } 
 else {//should be four then! 
  assert(decisions==4); 
  switch (highest) { 
  case 0: //north 
   loc.y-=stepSize; 
   returnVal = 'n'; 
   break; 
  case 1: //south 
   loc.y+=stepSize; 
   returnVal = 's'; 
   break; 
  case 2: //east 
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   loc.x+=stepSize;  
   returnVal = 'e'; 
   break;  
  case 3: //west 
   loc.x-=stepSize;  
   returnVal = 'w'; 
   break; 
  }; //end of switch */ 
 }; //else 
 
 //free inputs 
 delete [] inputs; 
 delete [] outputs; 
 return returnVal;  
 //ps. doing checking for world wrap by world object 
}; 
 
void Entity::relocate(Position newLoc, double newDirection) { 
 loc=newLoc; 
 direction=newDirection; 
}; 
 
void Entity::changeColour(Colour newColour) { 
 looks=newColour;  
}; 
 
void Entity::resetFitness(void) { 
 pSourceDna->fitness[raw]=(float)0; 
}; 
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Colour header and class definitions 

/* colour structure for vision things 
 Matthew Kelcey 
 Honours Research Code  
*/ 
 
#ifndef COLOUR_H 
#define COLOUR_H 
 
class Colour { 
 friend ostream &operator<<(ostream &output, const Colour &c) { 
  cout << "(" << c.red << "," << c.green << "," << c.blue << ")"; 
  return output; 
 }; 
public: 
 Colour() {red=green=blue=(double)0;}; 
 Colour(double r, double g, double b) {red=r;green=g;blue=b;}; 
 void set(double r, double g, double b) {red=r;green=g;blue=b;}; 
 void reset(void) {red=green=blue=0;}; 
 double red,green,blue; 
}; 
 
#endif 
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Neural Network header file 

/* NEURAL2.H 
 3-level neural network object class 
 inputs and outputs in range -1 to 1 
 no momentum implementation or flat spot weight correction 
   
 by Matthew Kelcey  
 Honours Research Code 
*/ 
 
#ifndef NEURAL2_H 
#define NEURAL2_H 
 
#include <stdlib.h>  //for rand() function used in creation 
#include "virtudna.h" 
 
struct listNode { 
 double *weights; //array to be dynamically created 
 listNode *next; 
}; 
 
class Network { 
public: 
 //default 
 Network(void); 
 //number nodes in layers (input,output), and dna; 
 Network(vDNA*);  
 //destuctor for removing dynamically created arrays 
 ~Network();  
 
 //progogate inputs through network and sets outputs 
 void propogate(double[],double[]);  
 //propogate and determine magnitude of error (tests & true values) 
 double errorMagnitude(double[], double[]);  
 //train network with input array and true values array and training rate 
 void train(double[], double[], double);  
  
 //make from the dna 
 void constructFromDNA(vDNA*); 
 //inject network info back into the dna 
 void injectToDna(void); 
 
 //raw fitness accessing 
 void clearRawFitness(void); 
 void addToRaw(double); 
  
 //for debugging 
 void display(void);  
  
 //this should be private but I trust my own access to it 
 int hiddenNodes; //number of 
 
private: 
 //keep pointer to parent dna for changing after training 
 vDNA *parentDna;  
 //need to store which part of the chromosone each node came from 
 //for reinjecting trained values back into the actual dna 
 int *positions; 
 
 ////implement weight values in terms of linked list of arrays since 
 ////it gave optimal performance under testing. 
 //list of arrays containing weights in hidden layer 
 listNode *hiddenWeights; 
 //list of arrays containing weights in output layer 
 listNode *outputWeights; 
 //hidden layer node values (to be created dynamically) 
 double *hiddenValues;    
}; 
 
#endif 
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Neural Network class definition 

/* NEURAL2.CPP v3.0 
 neural class method definitions  
 by Matthew Kelcey  
 Honours Research Code. 
*/ 
 
#include "neural2.h" 
#include <math.h> //for exp and pow 
#include <iostream.h> // for debugging 
 
void Network::addToRaw(double value) { 
 parentDna->fitness[raw]+=value; 
}; 
 
void Network::clearRawFitness(void) { 
 parentDna->fitness[raw]=0; 
}; 
 
//dot product function for fast double dp's 
//optimised for pipelining on PentPro  
double dotProd(int len, double *a, double *b) { 
 int k,m; 
 double sum=(double)0; 
 k=len/4; 
 m=len%4; 
 while (k--) { 
  sum += *a * *b; 
  sum += *(a+1) * *(b+1); 
  sum += *(a+2) * *(b+2); 
  sum += *(a+3) * *(b+3); 
  a += 4; 
  b += 4; 
 }; 
 while (m--) 
  sum += *a++ * *b++; 
 return sum; 
}; 
 
//constructors 
Network::Network(void) { 
 //nothing to do yet, useful for allocating   
 //space before actual dna is known 
}; 
 
Network::Network(vDNA *dna) { 
 //make it from the dna 
 constructFromDNA(dna); 
}; 
 
void Network::constructFromDNA(vDNA *dna) { 
 int i; //loop variable 
 
 //store dna pointer for changing when training 
 parentDna=dna; 
 //define the numbers of nodes in each layer  
 hiddenNodes = dna->numHiddens(); 
 
 //define lists for weights for network from dna  
 //and construct them now 
 hiddenWeights = new listNode; 
 outputWeights = new listNode; 
 //and array for holding which genes nodes are drawn from 
 positions = new int[hiddenNodes]; 
 
 //make list structure for hidden weights list 
 listNode *iter; 
 iter=hiddenWeights; 
 for (i=0; i<hiddenNodes-1; i++) { 
  iter->weights = new double[parentDna->ins]; 
  iter->next = new listNode; 
  iter=iter->next; 
 }; 
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 iter->weights = new double[parentDna->ins]; 
 iter->next = 0; 
 //and also make list for output weights arrays 
 iter=outputWeights; 
 for (i=0; i<parentDna->outs-1; i++) { 
  iter->weights = new double[hiddenNodes]; 
  iter->next = new listNode; 
  iter=iter->next; 
 }; 
 iter->weights = new double[hiddenNodes]; 
 iter->next = 0; 
 
 //extract data from strand and put it in these arrays 
 //and also into bias values array, and store info on positions 
 int upto=-1; //how far along dna strand we are 
 listNode *iterH = hiddenWeights; 
 listNode *iterO = outputWeights; 
 int whichNode = 0; //which node we are adding now. 
 //scan along strand and define weights for active nodes in hidden layer 
 while (++upto < parentDna->length) { 
  //is there a new array to define? 
  if (dna->piece[upto] > 0) { 
   //store where it came from 
   positions[whichNode] = upto; 
   //get values for hidden layer 
   for (i=0; i<parentDna->ins; i++) //can put upto++ in here? 
    iterH->weights[i] = dna->piece[++upto]; 
   iterH = iterH->next; 
 
   //get values for output layer 
   iterO = outputWeights; 
   while (iterO->next!=0) { 
    iterO->weights[whichNode] = dna->piece[++upto]; 
    iterO = iterO->next; 
   }; 
   iter->weights[whichNode] = dna->piece[++upto]; 
   //up to adding potential next node 
   whichNode++;  
  } 
  else //skip along strand to next node definition 
   upto += parentDna->geneLength-1;  
 }; 
    
 //create dynamic array for holding values propogated through network 
 hiddenValues = new double[hiddenNodes];  
}; 
 
//to delete a list, used by deconstructor 
void deleteList(listNode *iter) { 
 while (iter->next!=0) { 
  delete [] iter->weights; 
  iter=iter->next; 
 }; 
 delete [] iter->weights; 
}; //deleteList 
 
//destroy the network by freeing memory used by the arrays 
Network::~Network() { 
 //free up memory 
 deleteList(hiddenWeights); 
 deleteList(outputWeights); 
 delete [] hiddenValues; 
 delete [] positions; 
}; 
 
//propogate values from x array through network to y array 
void Network::propogate(double inputs[],double output[]) { 
 int i; //for loops 
 
 //evaluate values for hidden nodes (with sigmoid function) 
 listNode *iter = hiddenWeights;  
 for (i=0; i<hiddenNodes; i++) { 
  hiddenValues[i] = dotProd(parentDna->ins, inputs, iter->weights); 
  hiddenValues[i] = (double)(1/(1+exp(-hiddenValues[i]))); 
  iter = iter->next; 
 }; 
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 //evaluate values for output nodes 
 iter = outputWeights; 
 for (i=0; i<parentDna->outs; i++) { 
  output[i] = dotProd(hiddenNodes, hiddenValues, iter->weights); 
  iter = iter->next; 
 }; 
};  
  
//propogate and determine magnitude of error 
double Network::errorMagnitude(double input[], double trueValue[]) { 
 //for comparing against true values 
 double *output = new double[parentDna->outs];  
 double errorMagnitude = (double)0;  
 
 //get outputs first for error comparison; 
 propogate(input,output); 
 
 //calculate error magnitude as the mean square error 
 for (int j=0; j<parentDna->outs; j++)  
  errorMagnitude += (double)pow(trueValue[j]-output[j],2); 
 errorMagnitude /= parentDna->outs; 
 
 //free memory 
 delete [] output; 
 
 return errorMagnitude; 
}; 
 
//train network byb modifying weights given  
//input array inputs and true values array 
void Network::train(double inputs[], double trueValues[],  
        double trainingRate) { 
 int i,j,k; //for array handling 
 //outputs for calculating error magnitudes 
 double *outputs=new double[parentDna->outs];  
 listNode *iterO, *iterH; //iterator for output nodes and hidden nodes 
 
 //first propogate values through the network to obtain outputs 
 propogate(inputs,outputs); 
 
 //adjust hidden weights 
 iterH = hiddenWeights; 
 for (j=0; j<hiddenNodes; j++) { 
  //do sumation 
  double sum=(double)0; 
  iterO = outputWeights; 
  for (k=0; k<parentDna->outs; k++) { 
   sum += (outputs[k]-trueValues[k])*iterO->weights[j]; 
   iterO=iterO->next; 
  }; 
  for (i=0; i<parentDna->ins; i++)  
   iterH->weights[i]-=trainingRate*hiddenValues[j]* 
        (1-
hiddenValues[j])*inputs[i]*sum; 
  iterH=iterH->next; 
 }; 
 
 //adjust output weights 
 iterO = outputWeights; 
 for (k=0; k<parentDna->outs; k++) { 
  for (j=0; j<hiddenNodes; j++) 
   iterO->weights[j]-=trainingRate*(outputs[k]-trueValues[k]) 
         
 *hiddenValues[j]; 
  iterO=iterO->next; 
 }; 
 
 //free memory 
 delete [] outputs; 
}; 
 
void Network::injectToDna(void) { 
 listNode *iterH = hiddenWeights; 
 listNode *iterO = outputWeights; 
 
 //go through each of hidden nodes writing back to dna 
 for (int whichNode=0; whichNode<hiddenNodes; whichNode++) { 
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  //where to start injecting 
  int upto=positions[whichNode]+1; //add one since not changing active 
term 
  //inject weights for hidden layer (incoming weights) 
  for (int j=0; j<parentDna->ins; j++) 
   parentDna->piece[upto++] = iterH->weights[j]; 
  iterH = iterH->next; 
  //inject weights for output layer (outgoing weights) 
  iterO = outputWeights; 
  while (iterO->next!=0) { 
   parentDna->piece[upto++] = iterO->weights[whichNode]; 
   iterO = iterO->next; 
  }; //while 
  parentDna->piece[upto++] = iterO->weights[whichNode]; 
 }; //for i 
}; 
 
/// debugging routines 
 
//for displaying weights arrays 
void displayArray(double *array, int length) { 
 for (int i=0; i<length; i++)  
  cout << array[i] << " "; 
 cout << endl; 
}; 
 
void Network::display(void) { 
 cout << "network is " << parentDna->ins << ", "  
   << hiddenNodes << ", " << parentDna->outs << endl; 
 //display hidden node weights 
 listNode *iter=hiddenWeights; 
 cout << "HIDDEN WEIGHTS" << endl; 
 while (iter->next!=0) { 
  //print out array 
  displayArray(iter->weights,parentDna->ins); 
  iter = iter->next; 
 }; 
 displayArray(iter->weights,parentDna->ins); 
 
 //display output node weights 
 iter=outputWeights; 
 cout << "OUTPUT WEIGHTS" << endl; 
 while (iter->next!=0) { 
  //print out array 
  displayArray(iter->weights,hiddenNodes); 
  iter = iter->next; 
 }; 
 displayArray(iter->weights,hiddenNodes); 
 
 int q; cin >> q; 
}; //displayWeights 

 

 

 

 

 

 


