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Abstract

Much work has been done on applying evolutionary techniques to a number of
varying applications and in particular the training of neural networks. Most
evolutionary systems though are aimed at solving tasks requiring only a single entity.
This project applies co-evolutionary techniques to construct teams for multiple entity
problems with afocus on the communication aspects required between team
members.
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1 Introduction

1.1 Objectives

Evolutionary techniquesin all their forms, such as genetic algorithms, genetic
programming and evolution strategies, have been shown to give good results with a
wide range of varying problems. In particular they have been able to evolve
behaviours in simulated and real-time based controller systems, generally in the field
of robotics. Most research studies have focussed on a single controller for asingle
entity performing the required task. Less work has been done on team based problems
where a number of distinct entities are used to construct each possible solution. Any
communication in these types of systems has been predefined and static.

The objective of this project is to incorporate the communication aspects of team
based problems into the evolutionary system so that it can be evolved as an aspect of
the behaviour of an individual. This has the advantage of alowing complex problem-
specific communication systems to be evolved unique for each task. Once such a
system has been developed it can be compared with human defined communication
systems to decide whether evolving communication in this way can be useful.

All evolutionary systems aso have the advantage that they can be coded somewhat
independently of the problem being solved. As such it isan aim of this project to
develop a system that requires the minimum knowledge of how the communication
will act, only needing a definition of what behaviours to reward. In thisway the
desired behaviour of a problem can be abstracted away from the actual details of the

underlying communication that will be involved.

1.2 Method

This project involves five distinct stages
1. Thestudy of literature dealing with previous research in the areas of genetic

algorithms, neural networks and the combination of the two.
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2. Thedesign and implementation of a simple generic evolutionary system
incorporating a number of different implementation aspects and severa new
procedures’.

3. Thedesign and implementation of a simple feed forward neural network
class for the smulation of possible controller solutions.

4. The refinement of the evolutionary framework to perform specifically on
the neural network architectures defined in stage 3.

5. Thetesting of the system on increasing difficult tasks with conclusions on
whether such an approach can give valid solutions within time and
processing effort feasibility constraints.

1.3 Summary literature review

Evolutionary techniques are so called because of the conceptual similarities that exist
between them and the general principles of natural selection and genetics. Such
techniques work by maintaining a population of individuals, each of whichisan
encoded instance of a possible solution to the problem being solved. Techniques are
defined for the recombination of these individuals that have been chosen by selection
methods.

Co-evolutionary techniques are an extension to include maintaining a number of
populations at once. One reason thisis done isto provide solutions to problems that

require a number of different parts, such as the co-evolutionary paradigm.

When applying such techniques to specific problems such as neural networks’ a
number of issues must be addressed. The resolution of these issues often involves the
modification and specialisation of the evolutionary framework to work only on that
type of problem.

! Including pairwise elitism, selective genetic operators, sub-population team based management and
guessing-based selection

2 And in particular neural networks as a means of defining some form of controller.

8 |
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2 Relevant literature

2.1 Evolutionary Techniques

2.1.1 General Concepts.

Evolutionary algorithms use principles described in natural selection and genetics as
the basis of an adaptive searching technique. Luger and Stubblefield (1993 :529)
describe the genetic algorithm as an “implementation of a powerful form of hill
climbing that maintains multiple solutions, eliminates unpromising solutions and
improves good solutions.” Since they are a parallel search method they are proficient
at quickly finding near optimal solutions for domains whose state space consist of
many local minima. Though the execution of evolutionary techniques can be ow
Wasserman (1993 :74) states “In the long run, thisis probably not a valid objection.
These algorithms, like neural networks, are parallel in nature; their execution rate
increases aimost linearly with the number of processors.” Schultz (1994 :3) aso
points out that “ ...because of the nature of the genetic algorithm, the initia
knowledge does not have to be very good; it only needs to make the system have an
occasional success at performing the task.”

If an approximate solution found by the system is not accurate enough quite often
more traditional methods will converge on afina solution faster. In this way hybrid
combinations of evolutionary techniques and other search methods may produce more
efficient results.

Once aproblem is clearly defined an encoding for each possible solution needs to be
chosen for the evolutionary technique to work on. Thisis usually a vector termed the
chromosome. A way of converting this chromosome (the individual’ s genotype) into a
potential solution (the individual’s phenotype) needs to be defined, unique for the
encoding and the problem. A fitness function is aso needed that assigns area value
to each solution based on its relative ability to complete the objective. The allocation
of afitness function is a non-trivial task® and its definition will have a great outcome
on the performance of the overal agorithm. An evolutionary technique works on a

% For non-trivial problem domains.

9 |
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population of initially random possible solutions’ and at each time step defines a new

generation.

The three genetic operators are selection, recombination and mutation. Using these
methods individuals of the population are chosen proportional to their relative fitness
and recombined to create a new population whose overall average fitness is greater
than the last generation. There are a number of issues though which must be
addressed for each unique problem. These include the following.

Representation: evolutionary algorithms work with “genetic’

representations of trial solutions, usually in form of a string of real

or integer numbers. The user has to provide a suitable

representation and a function that maps genetic representations into

phenotypic trial solutions

Performance: afunction has to be provided that associates a

performance value with each individua . The performance should

reflect how good or how useful the individual is to solve the

considered problem.

Creation of offspring: the user has to specify operators (eg.

crossover or mutation) that allow the creation of new individuals

given one or two parent individuals. Very often these operators

need repair functions to ensure that the offspring isavalid tria

solution, or they include local hill climbing to speed up the local

fine-tuning.

(Branke, 1995 :2)

Functions such as crossover and inversion use information aready in the population
as ameans of generating better solutions. Mutation techniques introduce new
information about the search space into the system and ensure that the system both is
able to reach every location in the search space and will not aways become stuck in
local minima. Since evolutionary algorithms have been shown to be poor local fine
tuners (Y ao, 1996) (Branke 1995) hybrid approach’s using local gradient search based
methods can in certain conditions outperform either used alone. Usually the method is

* Some pre-processing can be done on the initial solutions to aid the algorithm’ s performance.

I
10 |
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to apply the genetic technique until there is some manner of convergence and then
switch to alocal hill climber (such as back propagation)

Procedures for implementing these methods in terms of a genetic algorithm were first
introduced by John Holland (Holland, 1962) and A. Fraser (Fraser, 1962) working
independently with few differences. The main difference between their early work
was “...Holland suggested reproducing each parent in proportion to its relative
fitness.” (Fogel, 1996 :90)

2.1.2 Selection Methods

It isimportant to make fitness evaluation a function that is as continuous as possible
so that the genetic operators can correctly discriminate between the different levels of
fitness in the population, even so a non-continuous function can provide valid results.
After fitness evaluation the raw fitness values must be converted to some scaled
fitness values ready for the selection process. For example if minimising an objective
function then small-raw functional values should be mapped onto high-scaled fithess
values for selection.

A technique such as roulette selection requires that al fitness values are positive and
adding any constant to remove negative values will scale the values unevenly, making
the selection act as arandom function.

A number of approaches to converting the fitness from raw values to scaled values
exist and can be used aone or in combination.

Masters (1993) gives the example of the function to map fitness values from low-raw
to high-scaled values, F(v) = € for some negative constant K. He states for values of
v' [0..1] from experimentation using K = -20 is effective.

Goldberg (1989) scaled all fitness values relative to the mean fitness of the entire
population to make the maximum fitness a predefined constant multiple, k, of the
mean. By experimentation he claims that rescaling with k between 2 and 1.5 gave
robust results.

Another problem associated with roulette selection is that the best chromosome in any
population can be lost in a generation through chance.

One way to ensure asymptotic convergence towards a globa maximum isto apply a
heuristic such as elitism selection (Grefenstette, 1986) where the fittest individual in

11 |
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each generation is copied to the next generation unchanged. The actual rate of
convergence though varies for each application.

Masters (1993) used a technique based on roulette selection that guarantees that the
fittest individuals in each generation are selected for reproduction. He produced an
array, the size of the population, of individuals to choose from and selection was
made from this array. Each individual has an expected frequency calculated and
individuals with afrequency of n.something are included n timesin the array. Once
all individuals with an expected frequency greater than one have been included the
remainder of the array isfilled with individuals that have an expected frequency of
less than one.

2.1.3 The Genetic Operators

2.1.3.1 Crossover

Crossover is the main genetic operator in most systems. It involves the recombination
of two (or possibly more) parent chromosomes into one or two children

chromosomes.

One point crossover works with two parents to produce two children. The effect of
one point crossover is shown in figure 2.1-1. When using one point crossover genes
nearer the middle are more likely to be separated than genes near the ends. One point
crossover aso requires some kind of inversion® for reordering of the chromosome to

remove this potential problem

One point crossover

Parents Children

1 Figure2.1-1: One point crossover

12 |
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Two point crossover uses a similar technique with two crossover positions chosen.
Two point crossover can be thought of as treating the chromosome as cyclic. Since
the advantage inversion displays in one point crossover is no longer apparent, it is no
longer required. The effect of two point crossover is shown in figure 2.1-2

Two point crossover

Parents Children

2 Figure2.1-2: Two point crossover

Uniform crossover is a gene-wise operator producing one child that assigns the child’s
n" gene from the first or second parent based on some measure of their relative
fitness. Syswerda (1989) had greater success using a uniform crossover operator as
opposed to using one or two point crossover on a series of functional optimisation

experiments.

2.1.3.2 Mutation

Mutation must be used in extreme moderation as it is a dangerous and destructive
operator. However it isrequired in any genetic system since it is the basis of
introducing new genetic material into the population. Rechenberg (1965) and
Schwefel (1965) both developed similar genetic techniques using only the mutation
operator.

When using a binary alphabet for encoding, mutation requires only the flipping of a
single hit.

When using a more complex encoding scheme, for example real value encoding, a
common mutation operator is the addition of a Gaussian random number with mean

® Inversion is genetic operator that reverses the order of the chromosome between two randomly chosen

points.

13 |
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zero and standard deviation proportiona to the individuals relative fitness. By using
an adaptive mutation operator such as this the destructive effects on highly fit
chromosome’sisto alesser degree then when it is applied to the more unfit
chromosomes.

Another form of mutation with real value optimisation is the replacement of a position
on the chromosome with a completely new random value.

2.1.4 Premature Convergence

Premature convergence is often apparent in evolutionary techniques due to the strong
emphasis on crossover and the selection of the fittest individuals (Kursawe). Once
convergence has occurred only the genetic operator of mutation makes changes to the
population turning the search into a random walk. Thisiswhen a hill climbing
heuristic can become useful to make use of both the strengths of a genetic technique
and a gradient search based method.

Schraudolph and Belew (1992) used an approach they name dynamic parameter
encoding as a means to avoid premature convergence. This technique uses a heuristic
to determine when convergence has occurred and dynamically resizes the available
range of each parameter to become smaller. Thisin effect “zoomsin on solutions that
are closer to the global optimum than provided by the initial precision” (Fogel, 1996,
:95) If the global optimum is not included in the initial range of parameter values
though this technique will be unable to find it. Schraudol ph and Belew found that
dynamic parameter encoding worked well when searching a quadratic bow! but

poorly when searching a multimodal function such as Shekel’ s foxholes.

2.1.5 Specific Methods

There are three major forms of evolutionary techniques being genetic algorithms,
evolutionary strategies (or evolutionary algorithms) and genetic programming (or
evolutionary programming). A comparison of these techniques can also be found in
(Fogel, 1993).

2.1.5.1 Genetic Algorithms

Formally a genetic algorithm uses only a binary aphabet to coincide with schemata
theory. “Holland recognised that every evauated string actually offers partial
information about the expected fitness of all possible schemata in which that string

14 |
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resides’ (Fogel, 1996, :92-93, in reference to Holland, 1975, :66-74) This
information, gained with many schemata, is termed ‘implicit parallelism'’.

Using a binary alphabet is powerful in the sense that the genetic operators working on
chromosomes are quite simple. Mutation for example is simply the inversion of one
position in the bit string. However the size of chromosomes for complex problems
may bein the order of thousands of bits and can be slow and produce inaccurate

values.

2.1.5.2 Evolutionary Programming

Rather than evolving specific solutions to a problem a collection of actual agorithms
associated with the problem can be encoded and recombined. L. Fogel pioneered this
general concept as ameans of simulating evolution on a population of competing
algorithmsto develop artificia intelligence. (Fogel, 1962). He used it to evolve finite
state machines for such tasks as predicting prime numbers (Fogel, 1966) and aso with
Burgin as a means of evolving strategies for simple games. (Fogel, Burgin, 1969)
When evolutionary programming is applied to real valued optimisation problems they
behave as evolutionary strategies, independently researched and described below.

2.1.5.3 Genetic Programming

One problem with using evolutionary techniques for neura network evolution is
scaling. A fully connected network with N neurons will have N? connections and this
produces impractical sizes for chromosomes. Genetic programming is a method of
evolving a set of growth rules rather than a direct representation of the problem and
can be thought as a solution recipe. This adds another layer of abstraction onto an
encoding with chromosomes consisting of rules on how to build the actual phenotypic
representation. Gruau (1994) devel oped an algorithm for compact cellular growth
based on symbolic S-expressions as a means of creating network growth rules.
Esparcia-Alcazar and Sharman (1995) found “ Although this method can evolve very
elaborate structures, we have observed that it takes very long to converge to an
optimum, which is unsuitable for certain applications.” (Alcazar, Sharman, 1995 :1)

2.1.5.4 Evolutionary Strategies

Evolutionary Strategies use a value type deemed necessary in the encoding of a

chromosome. Thisisimportant in problems that use real valued parameters as a

binary alphabet can not give the precision required without along chromosome.
|

15 |
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The evolutionary strategy approach was first explored independently by Rechenberg
(1965) and Schwefel (1965) addressing the problem of real valued continuous
function optimisation. “In this model, the components of atrial solution are viewed as
behavioural traits of an individual, not as genes along a chromosome” (Fogel, 1996
:85)

Kursawe studied evolutionary strategies in the context of multiple criteria
optimisation. To cope with the changing environment that is apparent with two or
more criteria he employed the use of dominant and recessive genesin his encoding.
His studies on co-optimising two complex functions showed exchanging the recessive
and dominant genes for each individual with a probability of around 0.3 gave robust
results. He concluded also from further testing that when only maximising one
objective function the modelling of diploid® individuals was not worth the extra

computation.

Two main approaches are in use today denoted by (mt+l )-evolutionary strategies and

(ml )-evolutionary strategies with mindicating the number of parentsand | indicating
the number of offspring per generation. In a(mtl ) evolutionary strategy the mfittest
of al the solutions move into the next generation where asin a (ml )-evolutionary

strategy competition is only between the| offspring with all parent’s being replaced.

2.2 Simple Neural Network Design

A neurd network is a biologicaly inspired parallel-distributed processing method. It
consists of a number of nodes (or neurons) connected by links. These nodes process
the values on the links entering them by means of an activation function and distribute
the result on the links leaving it. Each link has an associated weight that scales any
signal passing along it and it is these weights that act as the network’ s information
storage mechanism. Teaching the network is usualy achieved by manipulating these
weight values. A number of nodes are reserved as the input and output of the network.

® Polyploidy refers to the number of distinct copies of the chromosome kept by each individual.
Includes haploid (one copy), diploid (two copies), triploid (three copies) and tetraploid (four copies).

16 |



| Co-evolution of cooperative behaviour

The smplest network is called a perceptron and consists of one layer of weighted
connections. An example perceptron is shown in figure 2.2-1.

Inputs Outputs

3 Figure2.2-1: Onelevel perceptron

A network can aso consist of a number of hidden layers containing nodes not directly
acting as either input or output. An example single hidden layer network is shown in
figure 2.2-2

Inputs Outputs

4  Figure2.2-2: Single layer feed forward network

These networks are fully connected in that each node has alink to every node in the
next layer. Such networks are also called feed-forward networks since links only exist
from one layer to the next. Recursive networks can have connections from a node to
any another node, regardless of the layer and can include links from a node back onto
itself.

The activation function of each node takes the weighted inputs along all the links
entering that node and applies some function to serve as the output for that node. This
function is usually non-linear to produce a continuous response and needs to be
differential if using a back propagation based training method. A sigmoidal function

is often used since it produces a similar result to a simple threshold function but gives

17 |
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more accurate information when determining the error magnitudes that are needed for
the training.

Training of a network is usualy based on a gradient descent search of the error
response surface called back propagation. Given the network’ s response to inputs and
the actual desired result an error value can be calculated and fed backwards through
the network to adjust weight values. For a more comprehensive discussion on back
propagation algorithms see (Luger, StubbleField, 1995)

2.3 Evolving General Neural Networks

2.3.1 Overall Issues

The evolution of aneural network involves two parts, the selection of an appropriate
network topology and the optimisation of the interconnecting weights. Both of these
problems can be solved, separately or together, with a number of distinct approaches.

Issues that must be addressed with both stages of evolution include...
How the representation of encoding scales to large networks.
Whether reproduction operators create valid and more useful networks.
Whether the best network can be represented by the encoding scheme.
How invalid network designs are handled (usually left alone and
subsequently ignored by genetic process due to the poor fitness values
allocated to them)

There are two paradigms to designing a network’ s genetic encoding, low-level
encoding’ and high-level encoding®. Low level encodings are a specification of each
connection and weight explicitly, and grow exponentially with the size of the required
network. High level encodings encode a means of constructing the network (referred
to as “growth rules’ by Branke, 1995) and if encoded correctly are the same size
regardless of the size of network’s produced.

" Also known as strong or direct encoding.

8 Also known as weak or indirect encoding.
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An example of acombination of high and low level encoding is possible for example
with space on the chromosome reserved for weight values (low level information) and
also connection information (high level information).

When choosing an encoding scheme it is important to ensure human bias doesn’t
exclude networks that may be optimal.

2.3.2 Encoding

Real value encoding is one sensible choice for alow level network encoding scheme
because it is more consistent and precise and results in faster execution (Michalewicz,
1992) (Thierens et al, 1993) (Y ao, 1996).

Michalewicz (1992) also claimed that for extremely large state spaces, genetic
algorithms perform poorly though “it isonly fair to say maximising implicit
parallelism will not always provide for optimum performance” (Fogel, 1996 :94)
Since weights are real values the use of binary encoding resultsin very large
chromosomes with low precision and can slow down the evolution process. The
smplest low level encoding for a network is concatenating al the network’ s weights
into one string.

The main genetic operator crossover is more likely to separate gene information
spaced apart on the chromosome so it is sensible to place similarly functiona units
close to each other. Thierens et al (1993) placed incoming and outgoing weights of a
node next to each other.

Yoon et a (1994) placed al incoming weights of each node together and all nodes of
each layer together.

Saha and Christensen (1994) used an encoding method that incorporates both weights
and weight connections by supplying for each node an extra bit per weight
representing whether that connection is present or not.

An example of an encoding used to describe the connection pattern of a possible
network is shown in figure 2.3-1 (Miller et al, 1989)
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Genotype representation:  Phenotype representation:
(0011001100010000) Adjacency matrix ~ Actual network connections
1234
4
1/0011
2/0011
310001 3
4\0000
1 2

5 Figure2.3-1: Connection pattern encoding

One magjor problem apparent in encoding is the permutation problem, (Y ao, 1996)
also referred to as the competing conventions problem, (Branke, 1995) due to the fact
that many valid possible genotypes can map into one unique phenotype. “ The group
of functionally equivalent but structurally different networks can be defined by two
smple transformations.” (Branke, 1995 :14)

Thefirst is a permutation of the genotype that moves whole node information, leaving
the phenotypic representation of the network unchanged. The second is the inversion
of al the weights signs in a node with an odd activation function, again giving
different representations of functionally equivalent nodes. (Branke, 1995).

There are also problems dealing with the consideration of the extra size of the state
space (Branke, 1995) and the reproduction of unfit children using multiples of the one
node. (Y ao, 1996) With n nodes there are n! functionaly equivalent nodes under the
first transformation and 2" under the second transformation.

Braun and Weisbrod (1993) attempted to avoid the permutation problem by making
long connections less probable than short connections thus preferring the structured
mapping with the shortest connection length.

Thierens et al. (1993) reordered the genetic string before applying crossover in such a
way that nodes with a similar number of negative and positive weights are in the same

general position on the chromosome.
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2.3.3 Weight Optimisation

For anetwork with a fixed topology the selection of interconnecting weightsis an
optimisation problem with the goal to maximise the network’ s performance (Branke,
1995).

Evolutionary algorithms can be used for problems where gradient information is
unavailable since they do not use it. Thisis apparent in problems for “networks with
non differentiable transfer functions’ (Branke, 1995 :4), recurrent networks and when
using reinforcement learning methods (Y a0, 1996). Also since they are a global
search they can overcome many of the problems associated with local minima.
However there needs to be away of defining the performance of a network for the
allocation of relative fitness.

With problems where gradient information is easily obtainable methods such as
quickprop or cascade correlation usually outperform evolutionary approaches
(Schaffer et a, 1992)

2.3.4 Topology Optimisation

If the topology istoo small (in terms of units and connections)
the network might not be able to represent or even learn the
desired input/output mapping. On the other hand, if it istoo
large, the network very often generalises poorly to inputs
previously unseen.

(Branke, 1995 :5)

There is no restriction on the topology of a network evolved by an evolutionary
technique since they use no error signal back propagation (Branke, 1995). This can
make evolutionary techniques appropriate for non-feed forward network designs such

as recurrent networks.

2.3.5 Control Parameter Optimisation

The use of evolutionary techniques can also be applied to calculating control
parameters for gradient based learning techniques. This can either be included as extra
parameters in a hybrid approach or as its own genetic system.

Evolved parameters can include values such as learning rate, momentum values and
the initial weight range. (Belew et al, 1989) (Marshall, Harrison, 1991)
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Also work has been done on evolving parameters such as the activation function, bias
values, the learning strategy, weight decay terms and the number of training epochs
(Marshall, Harrison, 1991)

2.3.6 Fitness Evaluation

Fitness evaluation must take into account two factors, the performance and the size of
the network. The most common performance measure is a function of the network’s
mean square error (MSE) in relation to atest set. Since alow M SE indicates good
performance where as evolutionary techniques take low values as indicating alow
fitness there needs to be some inversion mapping applied. Usually /MSE, 1/1+MSE
or maxM SE-MSE (if amaximum MSE if known) are used for this mapping.

If atest set isunavailable, asisthe case in such applications as robotic controllers,
(Salama, Hingston, 1995) (Grefenstette, 1994) (Schultz, Grefenstette 1994) some
measure of the network’s performance at its given task needs to be defined.
Asameans of selection Fogel et a. (1990) enforced that each network was only
admitted to the next after competition with ten other individuals. The probability of a
network ‘winning’ against another was equal to the opponent’s error score divided by
the sum of both error scores.

A heuristic can aso be included in the evaluation of fitness to reward each good
property of a network. Whitley et a (1990), for example, used a bias to allocate more
of the overal training time to networks with a small number of hidden nodes.

2.3.7 Genetic Operators

When genetic operators such as crossover, inversion and mutation are to be used it
has to be decided on what scale the operations act, or deciding “on what constitutes a
gene”’ (Branke, 1995 :5)

Thierens et a (1993) developed a possible crossover operator that exchanged hidden
node information with al incoming and outgoing weights.

In terms of crossover applied to the connection pattern of two networks Braun and
Weisbrod (1993) allocated a connection to a child when both the parent’ s exhibit that
connection. If only one parent had the connection then it is passed on with a user
defined probability. The actual values of weights are also some user-defined function
of the parent’s weights.
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“A good mutation operator should adhere to the principle of strong causdlity, ie. It
should in most cases cause small differencesin quality” (Utrecht, Trint, 1994)

To follow this causality Angeleline et a (1994) made all new connections created
with associated weights set to zero and had new nodes added with no connections to
other nodes.

Branke (1995) initialised new weights with small random values as well as removing
low valued connections.

Fogel et al. (1990) used a mutation operator that added a random Gaussian number to
selected weights and decreased the deviation of the variable over time as a means of
annealing.

2.4 Evolving Neural Network Controllers

2.4.1 General Overview

Usually a controller for arobot system involves inputs coming from sensors of some
type and outputs mapping onto a number of possible actions. Evolutionary techniques
have been used successfully in a number of different problems to evolve controllers
for robot systems. Usually though these systems are simulation based only and hence
are different to redl life models in many respects.

Grefenstette and Shultz make the comment that evolving a controller system “...will
usualy require that the learning system be given whatever level of knowledge can be
easily provided by the designer.” (Grefenstette, Schultz, 1994 :65)

2.4.2 Fitness evaluation

The evolution of robotic controllers presents an interesting problem in terms of fitness
evaluation. Classifiers and networks used to predict time series usually use a function
of the network’ s mean square error to determine fitness but since the behaviour of the
controller is being evolved there is no unique numerical value that can be used for
this. It is difficult to assign fitness for an individual since it will usudly involve a

certain amount of human bias and error.
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2.4.3 Different Approaches

Wieland (1992) used a genetic agorithm to evolve recurrent networks for controlling
anumber of unstable systems including the broom handle balancing problem (also
referred to as the inverted pendulum problem).

Lewiset a. (1992) evolved a network of fixed size and used their system to evolve
the actual weight values for connections. They applied what they describe as staged
evolution where different parts of the network are evolved separately. Their results

show an improvement in the rate of global maximum convergence.

Cliff et a. (1993) used the SAGA genetic agorithm package to evolve controllers for
asimple wheeled robot. The emphasis of their work was to design a structure that
grew the size of the network for complex tasks and shrunk it for smpler problems.

Schultz and Grefenstette (1994) used a representation language approach to evolve
simple robot behaviours. They define a behaviour as a set of ‘if..then..” rules such
as...

| F front_sonar<30 AND bearing>10 THEN tur n=20

| F front _ir<5 THEN speed=-10
They also describe a system for including the rules in a hierarchical system asa
means of higher level abstraction.
One of the mgjor benefits with using such arepresentation isthat “...it alows the
learning system to be easily seeded with initial knowledge.” (Schultz, 1994 :2) Their
initial population of solutions was generated as a combination of human generated
rules and a number of variants on them. It seems though that using an approach of
deriving initia individuas from human solutions may include some kind of human
bias which may in turn inhibit performance.
Grefenstette (1994) talks about the same system and makes a number of points about
using background knowledge. Constraints can be added to limit the generation of
rules that are known to be undesirable though again thisis introducing a form of
human bias. If the allocation of fitnessis correct than any undesirable rule sets will be
removed by the evolution process itself.
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Salama and Hingston (1995) used a matrix approach to store network connections in
their system for evolving arobot controller where matrix element & j gives the weight
from nodei to node j. They evolved asimple robot controller for a 6 legged robot that
walks to atarget position using the minimum number of steps. An interesting concept
in their project is the selection of mating pairs. They include a smulation of afinite
grid that the networks inhabit. The networks are allowed to ‘wander’ randomly over
the grid for a set amount of time, at the end of which they breed with the fittest
network that they encountered. They believe this grid structure introduces a locality
factor into the selection process that maintains diversity in the population.

Also included was a uniform distribution of noise applied to the position of the virtual
robot to simulate some degree of real life noise. They conclude, “By inspection, it
seems that a moderate level of noise during training is most beneficial.” (Salama,
Hingston, 1995 :582)

Maher and Poon (1995) propose an encoding method for general optimisation where
the fitness function is encoded as part of the genotype and as such is co-evolved along
with design solution. They believe thisis an important part of many problems where
the environment is changing and present a number of aterations to the standard
genetic algorithm method.

Included is a design methodology for two-phase crossover, applied first to the
problem part of the chromosome and secondly to the design solution part. They state
“Optimisation is part of adesign process, but it is not the whole. The design process
includes the search for the problem as well as the solution.” (Maher, Poon, 1995 :243)

2.4.4 Problems with Noise

One main concept in all controller based evolution is the handling of noisy systems.
Normally ssmulation models do not accurately take noise into account and produce
unrealistic results. Also the robustness of most controllersis an issue. Do the training
procedures applied provide enough generaity? Schultz (1994) believes that including
more noise than is apparent in the real world environment makes evolved knowledge

in asimulation model more robust.
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2.5 Co-evolutionary Approaches to Control Algorithms

2.5.1 The Homogeneous and Heterogeneous approaches

There are two approaches to evolving a number of entities known as homogeneous’
and heterogeneous' evolution.

Reynolds (1993) used a genetic programming approach to evolve “critters’ that
exhibited herding behaviour when attacked by predators. His system evolved asingle
homogeneous controller that moved each critter with information on its position,
direction, neighbouring critters and predator locations.

Collins and Jefferson (1991) used a genetic programming approach to evolve a neura
network controller for ants in an ant colony simulation. A homogeneous network
controlled each ant with the fitness defined as the amount of food collected in a given
time span. Inputs to the network included neighbouring information about food,
pheromone and the nest. Outputs decided the movement of each ant and the laying of
pheromone.

Haynes et a (1995) used a heterogeneous approach to a similar problem breeding
teams of genetically programmed distinct individuals in a simple predator/prey
system.

Koza (1992) developed away of selecting heterogeneous individuals for ateam at
trial time that he termed co-evolution. A population under this scheme is divided into
sub-popul ations with each one providing a specialised member for the team.

Whether a problem is homogeneous or heterogeneous makes a large difference in the
breeding policy of the algorithm. In the homogeneous approach each member of the
population is evolved as norma and ateam is constructed by ‘cloning’ thisindividual.
In the heterogeneous approach there is the decision whether members should be
allowed to breed only with other team members or whether they are allowed to breed
between teams. (Luke, Spector, 1996)

An unfortunate problem associated with constructing teamsin thisway is the so-
called credit assignment problem. When ateam of entities has had a fitness value

® A common algorithm control different entities.

19 pistinct algorithms control different entities.
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evaluated for them as awhole, which individuals get more credit for the teams
success or failure? (Haynes et a. 1995)

Haynes et al. addressed this problem by considering the whole team as one individual.
There are facilities for defining sub-individuas within a main individual constructed
by Koza (1994) Automatically defined functions and Spector (1996) Automatically
defined macros.

2.5.2 Communication Systems and Coevolution examples

Luke and Spector (1996) in their research developed a simple predator/prey
environment with one ‘gazelle and a number of ‘lions, the aim of the lions being to
catch the faster gazelle. They tested a number of different approaches to team
selection for the predators and also a number of predator communication systems.
Sample runs found that restricted breeding between team members outperformed™
free interbreeding for predators that had distinct control algorithms. They aso
addressed the problem of deciding a means of communication between members of
each team. Their sensing experiments compared name-based sensing™ and deictic
sensing™ and found that the former outperformed the latter in all cases considered.
They aso found that “...as the sensing becomes increasingly distinct (more name-
based), heterogeneous approaches work better than homogeneous approaches.” (Luke,
Spector, 1996 :2)

Naghashi et a. (1995) review a number of approaches to evolving neural controllers
but point out common problems apparent in most. The first isthat when using a
homogeneous approach al entities act in the same manner when presented with the
same conditions. This means there is no unique learning mechanism in the scope of
one entities lifespan, each simulation gives only an evaluation of how the controller
performs and does not act directly towards improving it. They address this problem by
giving each entity it's own independent learning mechanism modelled with what they

cal a classifier system. The simulation used genetic programming to evolve

™ |n terms of the speed of evolution.
12 \Where entities are referred to explicitly (eg ‘ entity number 5')

13 Where entities are referred to implicitly (eg ‘ nearest neighbour’)
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“if..then..” rule structures for controlling the entities and observed the evolution of
mutualism between different entities as a means of survival.

The simulation consisted of three distinct entity types A, B and C with the following
main characteristics.

1. A preyed on B and B preyed on C but there was no interaction between A and C.
2. Each of the entities had a means of sensing the proximity of others.

If an entity caught another it gained that entities strength and this was used as a
measure of the fitness of each individual. Their research found that C evolved a
behaviour to stay close to A to avoid being caught by B.
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3 Design and methodology

3.1 Network encoding

3.1.1 General comments.

The genetic system defined for this project evolves the interconnecting weights and
bias terms for the nodes in the single hidden layer while aso performing limited
optimisation of this layer’s topology. Although this limits the behaviours of the
networks that can be defined, it gives rise to a ssimple encoding scheme.

As discussed previoudly in section 2.3.2 the classic genetic algorithm approach of
using binary encoding does not seem appropriate for neural networks so real based
encoding was used. For a neura network encoding thisis sensible since any fully
connected network can be defined by a sequence of real values (representing the
connection weights and bias values).

For this encoding scheme the number of input and output nodesis fixed and to make
the DNA afixed length a maximum number of hidden nodes is set prior to any

program execution.

3.1.2 Encoding scheme.

The encoding of a network is made up of a sequence of genes each representing a
potential node in the hidden layer. In turn each gene is made up of three sub parts, the
active position, the incoming weights and the outgoing weights.

3.1.2.1 The active position

The active position isasingle real value that determines whether the hidden node
represented by the gene will be exhibited in the final network. Thisisaform of high
level encoding with a non-negative value meaning this node will be present in the
network and a negative value meaning this node will not be exhibited in the network.
Thisisavery rough model of diploid behaviour in genetics where a section of DNA
can be ‘turned off’ with the possibility that it will become useful in the future and
‘turned back on’. The changing of the active position through mutation is the systems
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way of performing topology optimisation. Though this value could have been
represented in the gene string as a single bit, for the smplicity of the implementation
it was assigned to areal value so that the whole chromosome consisted of only real

values.

3.1.2.2 The incoming weights

The next section of the gene represents the incoming weights. The first of the values
isthe bias value for the node with the remaining values being the actual connection
weights from the input layer to the hidden layer. The bias value was included with the
incoming weights due to the implementation of how the bias values are used. This
section of the geneis alow-level encoding where the values in the gene itself map

directly onto the connection weight values.

3.1.2.3 The outgoing weights

The remaining values in each gene represent the weights of the connections from the
hidden layer to the output layer. This section, as with the incoming weights, is alow-
level encoding where the DNA values are mapped directly to the connection weight

values.

3.1.2.4 Encoding scheme details

For the general case of a network with | input nodes, a maximum of H hidden nodes
and O output nodes the chromosome for a single network is encoded in a string of
H(1+I+O) rea number values (with the 1 representing the active position).

It can be argued that the positioning of these three groups is important. For instance
with the active position next to the inputs there seems to be more of a chance of the
active position and inputs being passed to a child than the active position along with
the outputs. This problem isirrelevant though with the use of a cyclic crossover
operator so that the active position, inputs and outputs are effectively al neighbours to
each other. This would not be the case with 4 or more distinct groups of information
being represented by each gene.

3.1.2.5 A small example

The encoding for an example 2x3x2 network (2 inputs, a maximum of 3 hidden nodes

and 2 outputs) is as shown in figure 3.1-1. With 2 functional inputs there are actually
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3 inputs to the network with the first hard-wired to the value 1. The connection
weights from this input to the hidden nodes represent the bias values thus giving a
functionally equivalent implementation of how a bias value acts in a standard

network.

Bias term Incoming

Active position weights Outgoing

010803-0405-04 -02060208-0405 030602-06-050.2

Exhibited Not exhibited Exhibited

0.8 0.5

6 Figure3.1-1: An example of encoding for a 2x3x2 network.

3.1.2.6 Other aspects of the encoding

If the DNA for a potential network is initialised with random values then
approximately half of the genes will have a non-negative value in the active position.
This represents a network with only half the hidden nodes active and hence exhibited.
Thereforeiif it desired that the network has H hidden nodes then the actual DNA
should be defined to have a maximum number of hidden nodes equal to Hx2. In this
way the average number of hidden nodes exhibited by each network initialy will be
H.

The encoding scheme asiit is uses alarge degree of low level encoding. This method
encodes weight values accurately but does not scale well to large networks where
doubling the size of a network effectively doubles the size of the encoding.
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The system aso only defines fully connected networks with each hidden node
connected to every input and output node. The system can effectively simulate a non-
connection by having zero-weighted values but thisis not reflected in any fitness
functions applied during simulation and as such is not treated as a benefit in any

explicit way.

3.2 Fitness Evaluation

3.2.1 Simulation methods

When evolving networks the only way to get accurate fitness values is to express the
DNA in its phenotypic network form and run it through the task. This presents the

major bottleneck in the simulation where a single simulation run may take some time.
When the entire population must be simulated the program spends a large proportion

of itstime in smulating to gain fitness values.

One approach to dealing with this bottleneck is annealing the simulation length. For
example if the task is expected to take n turns in the simulation model we start with
the smulation lasting no < n. and each epoch we increase no until it reaches n where
the whole simulation will be performed. This gives an obvious speed up as the less
time is spent simulating though it has some major drawbacks. Without a full
smulation being applied members have an inaccurate fitness assigned to them.
Individuals that are good at the first parts of the problem dominate the population too
much in the early stages and the system has trouble learning the final stages of the
task. Annealing was tried as an approach in the path learning example (see section
4.3.1)

Another problem with having to perform simulation is dealing with any random
factors that may be present in theinitial set up of the smulation model. An example
of thisis assigning random starting positions to entities. An entity tested with a‘ good’
starting position will usually get a better fitness than one with a“bad’ starting position
even though they may have performed equaly if given the same position to start with.
The simplest and most effective approach to solving this problem isto perform

multiple simulation runs and take some form of average. This of course takes much

32 |



| Co-evolution of cooperative behaviour

longer but allocates fitness fairer, though it still does not guarantee afair trial for each
individual.

3.2.2 Fitness rescaling

Recall that fitness rescaling is converting the raw fitness values obtained through
simulation to the scaled fitness values to be used in the selection process.
Thereis aneed for rescaling to dea with two diversity problems apparent in any
genetic system.

Firstly when evolution starts there are usually afew ‘lucky’ individuals whose DNA
give them large fitness values compared to the others, even though they are not the
ideal individuals. These extreme values often mean these members swamp the
population in only afew epochs resulting in premature convergence.

The second problem is when the system is converging on an optimal solution and the
population consists of only high fitness valued individuals. In this case the system
cannot accurately select the fitter members over the others and some rescaling is
needed so that selection can properly determine the best individuals.

Best results were gained using the * scale maximum relative to average approach’ (see
section 2.1.2). Rescaling to make the maximum twice the average was found to give
robust results agreeing with Goldberg (1989). Since this value implicitly determines
the convergence rate of the system alower value (towards 1.5) with alarge population
maintained reasonabl e diversity. Vauestoo close to 1, indeed 1 itself, treat all

members equally and hence are useless.

Figures 3.2-1,3.2-2 show examples of this scaling using a number of different values
for k. It is notable that this technique can map some fitnesses to negative values.
Since these negative values will upset the standard roulette selection the algorithm
needs to deal with these negative values. All values can have a constant added to them
so the most negative value is scaled to zero or the algorithm can simply set the
negative values to zero. The former is preferred since setting al negatives to zero
treats these members unequaly.
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

k=1.5 k=2 average (k=1) ‘

7 Figure3.2-1: The effect of different scaling values on similar values
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k=1.5 k=2 average (k=1) ‘
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8 Figure3.2-2: Theeffect of different scaling values with distinct peaks

3.3 Selection

Standard roulette selection was used in combination with population elitism. This
produced a selection system that correctly selected proportional to fitness while
guaranteeing that the best solution was maintained. For a population of N members
the selection function was called at least N times. (Possibly more since in the case of

crossover another parent needs to be chosen)
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3.3.1 Naive roulette selection algorithm

The naive approach to implementing roulette selection requires that only each fitness
value and the sum of the fitness values is known.

An individua is selected asfollows...
1. Select a randomnunber, n, fromO to the fitness sum
2. j =0

h

3. if n £ fitness[j] then the j'" individual is selected and we are

fini shed
4. else n =n-fitness[j] and j=j+1
5. go to 3.

3.3.2 Improved guessing roulette selection algorithm

A guessing approach developed requires a selection array constructed in the following

way...

sel ect[ 0]

fitness[ 0]

select[j] fitness[j] + select[j-1] 1£j£N

The selected individua will be member j where select[j-1] < n £ select[j] (except for
the boundary case of n £ select[0]), al that is needed is to find the correct value of j.
Thisis done by making a guess of what j should be and refining the guess

This time the algorithm is as follows
1. select a random nunber, n, fromO to fitness tota
2. if n < select[0] we choose nenber 0 /1l ower boundary condition
3. if n > select[N1] we choose nenber N //upper boundary condition
4, guess j = n / average fitness val ue
5. if select[j-1] < n £ select[j] we choose nenber j and finish

6. if n > select[j] then j=j+1 and go to 5.

~

j =j-1 and go to 5.

This approach has the advantage of a great deal of speed up. Even though the select
array must be created it needs only be done once for each epoch where as the actual
selection will be performed N times.
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3.3.3 A comparison

Figure 3.3-1 shows the time taken for each selection method executed a thousand
times on a population with a thousand individuals.

400

% 300

£ 200 /

£ 100

B O B I I |
0 50 100 150 200 250

population size

‘—0— naive ——guess ‘

9 Figure3.3-1: A comparison of the times needed for different selection techniques

It can be seen the naive approach is of order (n”) where as the guessing technique

performs better with a performance of order (n)

3.3.4 Elitism and Pair-wise elitism

Since selection is till an essentially random process it is possible that the fittest
individual in any population may be lost smply by not being chosen. Recall that
elitismisthe act of taking the best member of a population and copying it without
changes to the next generation. Without some form of elitism the population is not

guaranteed to converge, either on an optimal solution or otherwise.

Pair-wise elitism is a further refinement devel oped for this project to further direct
convergence. In the pair-wise system a new member is created as normal by both
selection and the genetic operators to fill each position in the new generation. If the
fitness of the new individua is less than the member who previously occupied that
position then the new member is discarded and the previous member is replaced.
Pairwise elitism was shown to give good diversity and slower premature convergence

on some types of problems (see section 4.3.2)

The pairwise approach a so guarantees that the average fitness of the overall
population will convergence on the dlite fithess. Since both of these elitism techniques

have potential side effects on the evolutionary system they have associated with them
|
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probabilities that decide whether they are applied each epoch. (Eg. If the elitism
probability defined is 0.6 then elitism will be performed during 60% of the

generations)

3.4 Selective genetic operators

3.4.1 General comments

The three genetic operators implemented were crossover, mutation and inversion.
Since the encoding has such a specialised form it was decided that these operators
should be tailored for this specific encoding.

The nature of the genetic methodology does not require this to be the case though all
information that is general to the problem domain and does not bias solutions helps
speed the evolution.

These genetic operators define each position in the chromosome to be in of one of
severa categories. When choosing a position within the chromosome (eg. alocation
for crossover when performing crossover) each category has an associated probability
assigned so that some places are more likely to be chosen than others.

3.4.2 Weighted values for crossover position selection

Intuitively it was decided that there are two main ways of recombining two networks

to construct a new network using crossover.

Thefirst is to exchange hidden nodes and thisis reflected by defining a probability for
the position between genes on the chromosome.™*

The second is to exchange incoming and outgoing weights between hidden nodes.
Thisisreflected again by defining a probability for the gene position where the output
values start.

14 je Between hidden node information on the DNA
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Findly of course there must be a chance that a crossover point can occur anywhere
since this is the strength of the underlying evolutionary principle of crossover. For the
smplicity of the implementation it was coded so that in the third case it was possible
to choose a position from case one (between nodes) or case two (between incoming
and outgoing weight information) making the three possibilities not mutually

exclusve.

3.4.2.1 An example of possible crossover positions
In the case of a network with 2 inputs, 3 hidden nodes and 3 outputs a chromosome is
of the form ABI | OOOABI | OOOABI | OO0, Figure 3.4-1 shows the three possible

positions then for crossover.

Case 1: crossover location between nodes
A B Il | OOO‘ABI I OOO‘ABI | O 0O

Case 2: crossover location between incoming and outgoing weights

A B I I‘OOOABI I‘OOOABI I‘OOO

Case 3: crossover |location anywhere

A‘B‘I ‘I ‘O‘O‘O‘A‘Bll ‘I ‘O‘O‘O‘A‘B‘I ‘I ‘o‘o‘o

10 Figure 3.4-1: Possible choices of the location of a crossover point

Each of the three positions has associated with it a relative probability say Croge,
Cueght and Caywhere- If Ciota 1S defined as Chode + Cueight + Canywhere then the
probabilities of each occuring is Croge/ Ciotal, Cweight/ Crota @Nd Canywhere/ Crotal
respectively. Once one type has been chosen by these probabilitiesit is used to

determine the offset within arandomly chosen gene on the chromosome.

> A-node active position, B-bias term, I-incoming weight, O-outgoing weight
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3.4.3 Weighted values for mutation position selection

Weighted probabilities were also assigned to different positions on the chromosome
for the choice of the position where mutation could occur. Again these were chosen to
reflect the different attributes that the positions represent. Two types of position were
chosen; firstly the active position and secondly the positions of weight values
(including the bias term). Since the changing of an active position effects the network
much more than the changing of a weight the relative probability of active position
mutation was assigned much lower than that of aweight value. The algorithm for
deciding where mutation occurs is the same as that used in the case of crossover. First
atotal is calculated and used to determine which type of position the mutation will
occur at (active or weight position). Once thisis determined it is used to calculate the

offset in arandom gene of the chromosome.

3.4.4 Inversion positions

Inversion was applied on the scope of whole nodes so that the functionality of the
network remained the same. It was believed that inversion at the level of an individual
connection weight would be too destructive and hence serve no purpose. Inversion
even though it brings out problems dealing with competing conventions was still
included to increase diversity and alow the possibility of evolving networks with
multiple instances of the same hidden node. Inversion was assigned the lowest
probability of occurring so that some stability was retained in terms of a nodes

position in the chromosome.

3.5 Population Management

3.5.1 The concept of sub-populations and migration

The problem of pre-mature convergence with any evolutionary strategy is reduced by
somehow maintaining population diversity. One means of maintaining this diversity is
to split each population up into a number of distinct sub-populations so that a
dominant individual in a sub population can not effect the whole population. However
if these sub-populations are keep distinct then the global search power of the system is
lost. Migration is the act of moving a number of individuas between the sub-
populations
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3.5.2 Migration implementation

Migration is performed with a predefined constant frequency. If migration occurs too
frequently then the diversity of keeping sub-populationsislost. On the other hand if it
occurs not frequently enough then each sub-population will converge on separate
values. The number of individuasinvolved in amigration is a predefined constant,

usually asmall fraction of the sub-population size.

Each time migration occurs a number of individuals are chosen from each sub-
population to be moved to the next® sub-population.

The individuals that are chosen for migration must be located in the same position in
the sub-populations so that members are not lost. This concept is best explained with
the following two examples.

Consider a system of 24 individuals with 3 sub-populations, each consisting of 8
members and a migration size of 3 individuals. Figure 3.5-1 describes the two
possihilities for choosing the members who will be migrated.

The left-hand side shows the result from choosing a single random section of the
population and performing the migration with each sub-population using this single
section. As can be seen all members are retained with those in present in the section

change their sub-population membership.

The right-hand side describes the result of choosing a unique section for migration in
each sub-population. In this case some members are lost when others are copied over
them (denoted by bold lining in the final set of the right hand side). In the same way
some members under this scheme have a second copy of themselves created in the
population. Since this loss of members occurs randomly, regardless of the fitness
values of the membersinvolved, it should be avoided and the left hand approach
adopted.

16 Cyclically next

40 |



| Co-evolution of cooperative behaviour

| Original populations |

Positions the same | HEEEEEEEEEEEEEEEE |Positionsdifferent |
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11 Figure 3.5-1: Migrating with and without a single subsection

3.5.3 Introducing completely random members

To further maintain diversity in each sub-population a completely new random
individual can be introduced each epoch with a predefined percentage chance. To
cause the minimum disruption to the population this new individual should take the
place of the member with the lowest fitness. This concept can be thought of roughly
as a mutation operator working on the whole population since the role of a mutation

operator is to introduce new materia into the system.

3.6 Incorporating Back Propagation

3.6.1 How it can be useful

As previoudly stated back propagation is useful as afine tuning technique when the
genetic system has converged. It can also be useful near the start of asimulation to
direct the evolution towards a desired type of solution. Such usage though introduces
human bias into the system which should be avoided whenever possible.

3.6.2 Why back propagation was avoided

Back propagation is only useful when exact solutions are already known. Since one
point of this project was to apply evolutionary techniques where such exact solutions
are unknown it was avoided, even though it has strengths when dealing with neural
network architectures.
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3.6.3 Benefits of not using back propagation

Back propagation uses differentiation of the transfer function to determine error
magnitude information. It is thus required that the transfer function is continuous. If
back propagation is not to be used then a continuous transfer function is not required.
Simpler functions such as a standard step function can then be used. Of course back
propagation is applicable only to feed forward architectures and by avoiding it
completely more freedom is alowed when evolving the topology.
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4 Results without communication

As the code was devel oped a number of test cases were implemented. All cases
included evolving neural networks with the obtained results giving feedback for
further refinement of the algorithms and code implementation. The first cases
described in this section tested the details of the problems focusing on using one
population and evolving for tasks requiring only single entities. Communication
results are detailed in the next chapter.

4.1 Data prediction

The ssimplest and most common application of neural networksis the learning of a
simple data set. With theinitial framework prepared for the network architecture a test
case of learning a random data series was trialed.

A data set of 10 elements was randomly defined associating 5 random inputs with 5
random outputs where these values varied from +1 to -1. A single population was
maintained with a crossover probability of 0.7 and mutation rate of 0.01. Inversion at
this stage had not been implemented. Fitness was first defined as the sum of the mean
sgquare error. Figure 4.1-1 shows the results from a evolution of 30,000 epoches. Since
the system makes a great improvement in the first few hundred epoches figure 4.1-2
shows the same graph from epoch 3000 to epoch 30000 to increase clarity.
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time * 15

12 Figure4.1-1: Evolving data series prediction, M SE fitness 1
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5x5x5
5x4x5
5x5x5
5x7x5
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MSE fitness

1 21 41 61 81 101121141161181
time * 150

13 Figure4.1-2: Evolving data series prediction, M SE fitness 2

In can be seen that, as expected, the networks with the most hidden nodes performed

the best.

Next the fithess was defined as the mean square error result multiplied by the MSE by
the number of hidden nodes exhibited in the network. Results such as figure 4.1-3,
again showing only epoches 3000 to 30000, show the rewarding of networks with less

nodes though they perform the worse.

5x5x5
5x4x5
5x5x5
5x7x5
5x6x5
5x5x5

MSE x #hidden

49
6

8
97
113
129
145
161 |
177
193

time x 150

14 Figure4.1-3: Evolving data series prediction, M SE x #hidden fitness

Even with this ability to somewhat define a need for a small number of nodes the
evolutionary system could not improve much past a mean square error of 0.1. With
only 10 valuesin the data series varying between +1 and —1 thisis not a very accurate
result. Thisis an example where the evolutionary system has been able to quickly

give an approximate solution without being able to fine tune.
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4.2 Straight line movement

Thefirst test case of an actual controller was the evolution of asimple straight-line
walker. A single entity controller was evolved in a single population for the task of
maximising the distance travelled in 200 turns.

As inputs the controller received a series of random vectors of length five. The values
were random but predetermined so that on each execution of a smulation an entity
would receive the same data series.

With outputs being a decision to turn left, turn right or walk forward it isssmple to
determine the perfect entity for thistask is one that always walks forward. The fitness
function was simply then the distance travelled after the 200 turns.

. ST
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#epoches

distance

‘ —o—clite —s—average

15 Figure4.2-1: Evolution of a smple straight-line walker

Figure 4.2-1 shows the average values of three simulation executions. A population
size of five was used with a mutation rate of 0.01 and crossover rate of 0.7. A
maximum number of four hidden nodes were used. Again by this stage inversion was

has still not be implemented.
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Since it is desirable to reward alow number of hidden nodes the simulation was
further refined to have the fitness values divided by the number of exhibited hidden
nodes. Figure 4.2-2 shows the average of three runs with the same values for
population size and mutation and crossover rates. For each population a perfect
walker was evolved before epoch 20 though it took longer to further evolve the

networks to use alower number of hidden nodes.
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16 Figure4.2-2: Evolution of a smple straight-line walker rewarding fewer hidden
nodes

Two plateaus are apparent in the graph. Thefirst is from epoch 13 to epoch 23 where
two of the three runs have evolved a perfect walker with 2 hidden nodes. The third
run took longer to evolve to this degree and as aresult this plateau is just under 100"
The second longer plateau from epoch 30 to epoch 53 is the result of two of the runs
evolving the perfect walker using only one hidden node. All three had finally evolved
the perfect walker by epoch 60 with only one hidden node.

This example though it shows good resultsin terms of the evolutionary system, is
somewhat contrived in terms of the networks. The solution for this problem isto
always walk forwards, ie give a high output on the forward output node and low
values on the turn left and turn right output nodes. Quite often with a random weights
defined for a network one hidden node will dominate all the other nodes in the layer

17100 being the perfect score for a network with two hidden nodes.
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resulting in one single output node firing constantly. This was apparent with one
simulation run where a perfect walker was present in the first random population

4.3 Path navigation

4.3.1 Navigating a simple path

For amore complex version of evolving awalker the problem was changed to an
entity having to navigate along a simple path. This time the inputs were the
coordinates of the entity (x and y) and the direction faced (in discrete multiplies of 90
degrees). Outputs defined the decision to turn left, turn right and to move straight
ahead. The entities had no direct knowledge of the path with fitness calculated as a
function of the amount of path covered in agiven fixed amount of time. The path can
be thought of as being on a black and white grid with the black squares defining the
path.

The first smplest fitness function tested was defined as rewarding one point towards
the fitness for each black square traversed. To ensure that the same piece of the path
can not be counted twice every time a black square was covered it was changed to

become white.
=IIIIE [:——— =IIIIE
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17 Figure4.3-1: A good and bad attempt at navigating a simple path

This fitness function works but is rather discontinuous. For example the two possible
walks shown for asimple path in figure 4.3-1'® are both allocated the same fitness
under this function even though the first is obviously a better solution.

18 S start of path, E-end of path

47



| Co-evolution of cooperative behaviour

This presents a good example of being able to put prior knowledge of the problem
into the evolutionary system, in this case to produce a more continuous fitness
function. By grey scaling the grid with extra grey squares that represent partial fitness
points the fitness function can more accurately rate potential solutions. The path can
then be of the form shown in figure 4.3-2. Now fitnessis assigned by allocating points
based on how dark the square covered is. This concept can even be extended to define
outer regions to represent negative values so that going in the wrong direction can be
penalised.

) ]
LS __ I
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18 Figure4.3-2: Grey scaling the path for a more continuos fitness function

The evolutionary system was able to evolve a solution for traversing the path as well
as bringing out an interesting trait in the fitness function that had been previousy
unthought of. Figure 4.3-3 shows the elite and average member information for a
single evolved population of 30 members.
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19 Figure4.3-3: Theevolution of a smple path follower
I
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A perfect navigator is evolved by epoch 30 but it can be noted that an individual was
eventually evolved that gained more than 100% on asingle trial. Thisis aresult of the
fixed amount of turns given to traverse the path being more than what was required.
This combined with the grey scaling that was applied for a smoother fitness function
gave the opportunity for some individualsto dightly ‘cheat’ as shown in figure 4.3-4.
A good example of greedy optimisation.

20 Figure4.3-4: Path followed by the elite member evolved

The number of hidden nodes evolved for this smple path averaged at just over four,
while the entities that solved the path normally usually had two hidden nodes. These
figures roughly correspond to the number of turns needed for completing the path.

Annealing of the simulation length was then tested with the relationship between the
simulation run length and the current epoch described by figure 4.3-5. Note that the
length flattens at 16, the time needed to traverse the entire path.
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21 Figure4.3-5: Therdationship between epoch number and simulation length
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Figures 4.3-6 and 4.3-7 show the comparisons between using this annealing technique
and allowing each epoch to run for afull term. Again these graphs represent the
average of three complete program executions. The annealing approach took
approximately 40% of the time to execute though it took longer to evolve with both
trials eventually evolved a perfect member. In can be seen though that al diversity
was lost in the annealed case and as such the smulation relied only on mutation to
better the population.
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22 Figure4.3-6: Evolution of a path follower with annealed smulation time
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23 Figure4.3-7: Evolution of a path follower with fixed simulation time

4.3.2 Navigating a more complex path

As afurther test of the evolutionary system the path was extended to a more complex
design and the facility for pairwise elitism was implemented. Figure 4.3-8 shows the
more complex path used for testing without showing the grey scaled smoothing that
was used as before. A single population of thirty members was maintained with
crossover and mutation probabilities defined as for the smpler path example.
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m

24 Figure4.3-8: A more complex path

Figure 4.3-9 shows the average evolution of the elite member from three runs using
no elitism, normal elitism and pairwise ditism. The pairwise approach performed well
in this task converging faster on the optimal path navigator.
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25 Figure4.3-9: Comparisons of different elitism techniques with the complex path

The pairwise approach also maintained greater diversity in the population compared
to the normal elitism approach. Figure 4.3-10 shows the average from three runs using
pairwise elitism. It demonstrates how the elite member’ s fitness is kept almost a
constant value greater than that of the average fitness, indicating a reasonable level of
diversity throughout the evolution of the population.
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26 Figure4.3-10: Evolution of a path follower using pairwise elitism

Figure 4.3-11 shows the average of three runs using only normal elitism. It can be
seen that most of the diversity islogt, in this case around epoch 20. Any
improvements in the elite member once this diversity islost are aresult of the
mutation operator.
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27 Figure4.3-11: Evolution of a path follower using normal ditism
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4.4 Vision

4.4.1 Vision Implementation details

A simple vision system was developed as a means of representing more realistic
simulation models to mimic what would actually be used in real world applications.
The provision for vision also alows another form of communication if entities have
the ability to change the colour they display to other entities.
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Though vision was developed it was not part of the major test case, explained in
section 5.3, due to the time restrictions of the overall project. Evolutionary learning
results were obtained that required vision but not using colour changing as aform of

communication.

Vision was implemented by assigning an entity afield of view and a number of
segments within the field of view referred to as ‘ eyes . With the direction of the entity
known it can be calculated whether other objects in the simulation model are visible
and, if so, which eye would ‘view’ the object. A mapping can then be defined from
what is seen by the eyes to a number of inputs for a network.

For example with 3 colour components being used to define the possible colour of an
object and 4 eyes within the field of view 12 inputs are needed (one for each colour
component within each eye). The signal that an eye seesis aso scaled relative to the
distance to the viewed object to simulate depth cueing.

An example of a possible case of vision is shown in figure 4.4-1

28 Figure4.4-1: Vison interpretation example
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4.4.2 Turning to the red pole

The vision system was tested with the task of turning towards a red object in aroom
containing other objects of different colours, in this case two green poles, a blue pole
and a purple pole (red and blue). The colour of an object was defined in terms of 3

colour components (corresponding to red, green and blue).

The controller for the network used fifteen inputs for the 5 eyes with 3 colour
components and 3 outputs for turn left, turn right and don’'t turn at al. The field of
view was 90 degrees with fitness defined as a function of the angle between the
direction the entity is facing and the angle to the red pole. This angle was cal culated
each turn and summed over the entire simulation to give one fitness value. Since it
was required that low values of this angle represented a good behaviour the fitness
was inverted when the simulation was compl eted.

To incorporate some degree of non-determinism the entity started a constant distance
from the red pole but with a direction defined within +/- 40 degrees of facing it. This
ensured that the red pole was within the field of view of the entity at the beginning of
the simulation. Since this starting angle changed each entity was tested 4 times with

an average performance considered.

Figure 4.4-2 shows the average of three executions of the evolution for learning this
task. A single population of 30 members was maintained with the evolution running
for atotal of 15 epochs and each entity being given 20 turns per trial.
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29 Figure4.4-2: Evolution of an entity using vision to turn towards a tar get object

Convergence occurred with the elite member able to turn towards the red pole in each
smulation. Even though the entity had the ability to not turn in ailmost al simulations
the evolved entity turned to face the red pole and then repeated oscillating between
turning left and right. It is hypothesised that this behaviour can be attributed to the

fact that the system was trained to in some cases turn |eft towards the pole and in

other cases turn right. Hence the outputs strengths for turning left and right were
much stronger then that of not turning. Once the entity had turned |eft™® to the red pole
then the strength of turning left became less and the turning right signal became
dominant. Once the entity had turned right the signal for turning left again became the

most dominant and the entity turned back, oscillating between the two.

4.4.3 Moving to the red pole

To force the system out of this oscillation process the system was changed. The not-
turning decision was replaced by the decision to instead walk forward with the fitness
changed to be afunction of the distance from the red pole (to be minimised so again
the distance summed over al epochs was inverted). This time the system was unable

to evolve a performer for the task.

Figure 4.4-3 shows an average of 3 runsfor learning this task with a population size
of 100 members and an evolution time of 40 generations. Though the graph shows

19 Without loss of generality.
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convergence of the average it can be seen the elite member improves very little with
the evolved behaviour smply always walking forward. Thisis a prime example of
how pre-mature convergence meansit is possible for sub standard membersin the
initial population to be able to dominate. In this case the elite members were members
with extremely high connections to the walk forward output resulting in the constant
behaviour of moving forward. With the entity facing in generally the correct direction
walking forward gave a high enough fitness so that the entities trying to learn to turn

as well as moving forward were unable to beat those who only walked forward.
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30 Figure4.4-3: Evolution of an entity using vision to walk towards a tar get object
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5 Results with communication

5.1 Hearing facilities

The most intuitive way to implement communication between distinct networks isto
reserve anumber of nodes in the input and output layers for the purpose of
communication. A number of issues arise from the concept of using communication
dealing mainly with the nature of the smulation model. For example if one member
makes a broadcast, which of the othersin the smulation receive it? If two members
are to broadcast at the same time how are the messages resolved to the one set of
inputs? Also with the simulation occurring with discrete time steps only one entity
can be considered to be moving at any time, bringing up questions dealing with when
other entities hear the broadcast.

Communication was implemented by using atemporary buffer in the world. Since
only quite ssmple models were tested this buffer effectively allowed one entity to hear
the broadcast made by the previous entity that had moved. This alows only
communication from one entity to one other entity but was not further refined since it
was al that was required.

5.2 Migration testing

Migration was implemented as specified before (section 3.5.2) with a number of sub-
populations maintained and parameters defined for migration frequency and migration
amount. Migration was performed cyclically to remove any favouring of centrally
positioned individuals.
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Asatest of the migration system and how it could improve diversity asimple
homogenous communication model was developed. An entity had two copies cloned
and placed pseudo randomly? in the same virtual environment. Inputs to the
controller were its current position and a message of length two from the other clone.
Outputs were reserved for the decision to move®™ and for broadcasting a message to
the other clone. With the task being for the two clones to move together the only way
of achieving a high fitness without explicit knowledge of each others position was for

the two to broadcast to each other some function of their own location?®.

Thefirst trials performed could not evolve sensible behaviours due to a small fault in
the simulation model. It isinteresting to note the error though as another example of
greedy optimisation of afitness function giving an unexpected behaviour. When first
trialed the elite behaviour, evolved in less than 10 epochs, was smply for both clones
to move always towards the east®®. With both entities moving the same direction and
hence maintaining the same distance apart, it was unsure how this was given a high
fitness. The problem lied in the size of the smulated world. It turned out that an entity
was able to reach the boundary of the world in the number of moves allocated to it for
each ssimulation regardless of where it randomly started. When an entity reached the
edge they were kept there instead of wrapping around. Both then learned to ssimply
move to the right wall and become stuck there, relatively close to each other and
hence obtaining a high fitness. Y et another example of sub-standard random
individuals at the beginning of an evolution dominated the population early.

Increasing the size of the ssimulation world solved this problem for usein later

examples.

Three sub-populations, each consisting of 100 members, were maintained for the next
trial. Firstly an execution was performed that included no migration between the three

% Randomly positioned around each other so that the distance at the start of the simulation was
constant. This ensured there that each entity had an equal start while still retaining some degree of non-
determinism in the model.

2 |n this case being the 4 directions north, south, east and west

22 Though it turns out this was not the casel!

% Though without loss of generality the observed behaviour could have been to move any direction.
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populations, described by figure 5.2-1 As can be seen all three populations converged
at around the same time with a similar fitness for the elite member.
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31 Figureb5.2-1: Evolving three sub-populations without migration

The simulation was then run again with a migration this time being applied. The
migration rate was chosen to be each 20 epochs since convergence occurred at around
this time in the previous test. Each migration moved 5 individuals cyclicaly choosing
all the same numbered members so that none where unfairly lost (as discussed in
section 3.5.2). Figure 5.2-2 shows the result from an execution with the vertical lines
placed corresponding to the epochs when migration occurred. It can be seen that the
migration proved beneficial each time it was applied noting that before each migration
instance each sub-population had reached a stable state. It also gave a higher overall
converged value with each population having the same elite members fitness (and it

turns out the same elite member as expected).
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32 Figureb5.2-2: Evolving three sub-populations with migration
I
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Even though having migration gave a better result it was unsure how much was
gained from migration explicitly. In the case without migration each member only had
it's own sub-population of 100 to breed with. When migration is incorporated the
breeding population can be considered to be al 300 members®®. A further test was
then constructed that tested one single population of 300 individuals instead of 100 to
see what difference a larger population had on this test problem. Figure 5.2-3 isthe
result of this evolution and has interesting implications. As expected it performed
better than the single populations of 100 members in approximately the same number
of epochs but did not outperform the instances of maintaining the separate sub-
populations in the same time frame of 100 epochs. For this problem then it shows that
maintai ning sub-populations can outperform a single popul ation the size of the sub-
popul ations combined.
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33 Figure5.2-3: Evolving all three sub-populations as one single population

Though this example shows how migration can work well it still did not evolve a
behaviour in the individuals that was expected. Though the expected results were that
the entities would evolve a means of broadcasting to each other some function of their
location, the entities actually paid little attention to the message passing. Instead a
system was evolved where the entity controller learnt to just move towards one
location. Since both entities present are clones then both move to the same location

2 Though a member only has the chance to breed with the whole population if it is involved with each

migration instance.
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reducing the distance apart and hence satisfying the requirements of the fitness
function. Once again this is example of an unexpected behaviour due to the extremely
greedy nature of the evolutionary paradigm along with aloosely defined fitness

function.

5.3 Major test case model description

For amajor test case agame of “follow the leader” was chosen. This simulation
game includes two or more entities, one of which isthe ‘leader’ with the others being
‘followers . The goal of the game is that the followers must all move towards the
position of the leader®™. This model is similar in nature to the previous example but
uses two distinct types of individuals that require different behaviours. It was hoped
that this distinction would this time force a need for communication as opposed to

both just moving to the one position.

All entities were again made aware of their global position in the simulated world and
as before had no explicit knowledge of the position of any other entities. Two nodes
in the input and output layers were reserved for the purpose of communication
between entities. This amount was chosen to correspond to the two coordinates used
to determine the position of an entity. One possible solution for using this
communication could then be to assign one message position for relaying the details
of each coordinate. Inversion was implemented at this time though without specific

data gathered on the effect of inversion it is unsure of the effect inversion had.

5.4 The homogenous approach

The homogenous approach uses a single population for evolving controllers that learn
the task of being both aleader and afollower. The population is split into a number of
sub-popul ations with a migration system used. Since both the behaviour for a leader
and afollower needs to be learnt there needs be provision in the input and output
layers of each controller for the requirements of both tasks. Along with thisthereis
required some means of informing the network which role it should play.

% Due to time restraints the simulation was only tested using a leader that remained stationary
throughout a simulation execution. For this reason perhaps “go to the leader” would have been amore

accurate name.
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The inputs required were then...
1 node for specifying whether this entity should act as aleader or follower.
This was implemented by hard wiring asignal of 1 to leader controllers
and asignal of O to follower controllers.
2 nodes for representing the position of the entity. With the size of the
world having co-ordinates ranging from O to 1. Both entities needed to
make use of these signals. The leader needed to map them in some way to
the outputs reserved for messages and the follower needed to use this
along with the incoming message to decide in which direction to move.
2 nodes for the actual receiving of messages. Since the follower only used
these the leader had them hard wired to zero®.

The outputs required were...
4 for the possible decisions to move ‘north’, ‘east’, ‘south’ and ‘west’.
Since the leader was not implemented to move these signals were ignored
by leader controllers.
2 nodes for the broadcasting of messages. This time these nodes are only

used by the leader controllers and ignored by the follower controllers.

Testing of the homogenous type of controller was relativity straightforward. Two
clones were constructed and placed in a smulated environment with one being
assigned to act as the leader and the other designated as the follower.

Fitness was defined as the distance between the leader and follower summed over
each turn of asimulation run. Again as this value needed to be minimised the

complete sum was inverted.

% A possible extension of the problem here could be to treat these as normal input of the message

signal so that the leader would have to leader to ignore them.
I
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Note that in this case creating multiple instances of the follower in the simulation
model can improve the accuracy of testing of the follower role. With multiple
followersin different positions a better representation of how the follower works can
be obtained. Multiple followers are also easy to incorporate into the fitness function
by summing the distance from the leader to each follower.

5.4.1 Homogeneous evolution results

Theinitial tested simulation used a single population divided into 5 groups of 30
individuals. A crossover rate of 0.8 was defined with a mutation rate of 0.01 and
inversion rate of 0.001. Unfortunately a number of tests all showed the system was
unable to evolve a system of communication between the leader and the follower even
though it displayed normal, abeit slow, improvement and convergence of elite
members and average member fitness values. Even still an interesting behaviour was
observed where the overal elite member from a number of program executions
ignored all communication but managed to evolve followers that moved generally
towards the centre of the simulated world. Again this shows a case of the system not
being able to evolve the desired result but still being able to define a behaviour that
satisfied the fitness function.

It was decided one key factor that caused the system to fail was the differencein
complexity of the networks required for aleader and a follower. Where as the leader
ideally must just repest its position, the follower needs to interpret its position as well
as the message from the leader and decide on a direction to move. Thisis made
especidly difficult for the follower since whileit is evolving the leader also is

evolving and hence initially gives garbage values as its message to the follower.

Figure 5.4-1 shows the decisions by the €elite follower on how to move. Thisfigure
was obtained by placing the entity evolved in various positions on agrid and for each
position placing the leader in 20 random positions. All arrows show the decision made
with black arrows indicating a move towards the centre and the light grey arrows
indicating a move away from the centre. A majority of black arrows indicates that the
behaviour evolved was to move towards the centre of the grid which is the effective

average position of the leader given a number of random placements.
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34 Figure5.4-1: The movement decision of a follower

5.5 The heterogenous approach

In this case the model task was unchanged but separate popul ations were maintained
for the roles of leader and follower. Each population was again broken into sub-
populations to maintain diversity with migration used between sub-populations of the
same population (ie no breeding between leaders and followers)

Recall that the heterogenous approach has a number of advantages and disadvantages
when applied to ateam problem.

5.5.1 Population management

The mgjor advantage is that the complexity of a single network is reduced. In the
homogeneous case of ‘follow the leader’ it was required that each single member had
to learn both the tasks of being aleader and afollower. By using a heterogenous
approach we evolve networks that are more specialised for the smple tasks of being
only aleader and only afollower. By maintaining separate populations we also gain
control over the relative time spent evolving each distinct type of team member. For
example in the case of ‘follow the leader’ alarge population of followers can be
maintained to reflect the need for more time to be spent on them since they require

more complex networks.

Unfortunately there are associated disadvantages with using heterogenous evol ution.
As stated before (section 2.5.1) there are problems with the selection of the members
to make up ateam and also the allocation of fitness calculated for each attempt at the
task.
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5.5.2 Team selection

Recall that when using team based problems determining the fitness of an individua
requires an entire team. Testing a single member thus requires that other individuals
be chosen. The result of the fitness cal culation then becomes dependent on the ability
of the other team members, not just the ability of the member being tested. This
brings up the possibility of a good entity being assigned a bad fitness just because it
had poorly performing team members. Two ways to overcome this problem have been
tried with varying results defined as follows...

5.5.2.1 Elite team completion

One approach is to complete the team with the relevant elite members from each
population. This can be on the scale of an entire population, for example if testing a
follower then complete the team by adding the overall elite member from the |eader
population. In this case since each member is tested only with specific other members,
namely the elite members, it was found this technique converged quickly on a sub-
optimal solution, mainly dueto alack of diversity of the teams constructed.
Alternatively we can add a dight random element by choosing to complete the team
with the elite member of arandom sub-population of the leader population. This gave
more diverse results in the case where there were enough sub-populations but
included a completely random event being the selection of which sub-population to
use. As each sub-population converged this technique became effectively the same as

selecting the overall elite member of the entire population.

5.5.2.2 Non-deterministic random team completion

For a more non-deterministic team we can use the standard selection method applied
normally to each sub-population to choose members to complete the team. Since this
allows the possibility of every member having a chance to be in each team?” it should
be performed severa times for each test with an average taken.

5.5.3 Heterogenous evolution results

It was found that this approach had trouble using the communication to complete the
task.

%" proportional to its fitness relative to the other members of its population.

|
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Two types of behaviours were observed as...

1. Thefollowersignored the output of the leader and moved again to
approximately the middle position. When this happened it was the case that
one type of follower was dominant early on and the leaders had trouble
working with the proper followersin evolving a communication. Thisis
similar to the example of evolution described in section 5.2.

2. Thefollowers and leaders only learnt to express one coordinate in the two
decision dots. The followers moved to obtain the same value as the leader in
one coordinate but not the other.

An example of the output from aleader is shown in figure 5.5-1. Taking the elite
leader evolved and testing the output it gave from various positions on a grid
generated these figures. The figures have the x and y axes representing the position of
the leader and the z-axis representing the output given. The left shows the values
generated on the first output communication node and the right shows the values from
the second output communication node.
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35 Figure5.5-1: Communication output of the leader network

It was expected that each output nodes would be allocated to a separate co-ordinate
though it can be seen thisis not the case.

No behaviours were observed where communication was learnt accurately for both
co-ordinates. Extending the number of slots reserved for the message from 2 to 3

slowed the evolution but still gave no examples of good communication. A more
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accurate fitness function needs to be devel oped along with a more complex simulation

environment specialised for this problem.

These results are strongly co-evolutionary in the sense that combinations of leaders
and followers from different executions can not perform together. Thisis dueto the
functionally equivalent communications evolved that are incompatible across
different executions.
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6 Conclusions and further work

It seems that the results gained were strong in the aspects general to all evolutionary
techniques (such as migration as a means of maintaining diversity). However the
aspects of the project dealing with the evolution of communication did not perform as

well aswas initialy expected.

It was the aim of the project to develop a system as generic as possible, applicableto a
wide number of communication applications. It was initially considered important to
be able to develop a communication system for a problem without having to input
explicit knowledge of how the communication would be performed and reward only

in terms of performance. It seems though that desired behaviours were obtained only
from problem examples using a very precise fitness function. Such a complex fitness
function in many ways outweighs that fact that minimal input is required towards how
the communication would act and hence how behaviours should be rewarded.

Any such simulation system relies on complexity being apparent in either the fitness
function or the simulation model. Most of the problems studied use an extremely
smple ssimulation model and hence required a complex fitness function so individuals
in a population could be correctly and fairly graded against each other. It is believed
that moving the complexity of the problem from the fitness function to the smulation
model would give results where correct behaviours were evolved from more simple
fitness functions. The one case where good results were obtained from avery smple
fitness function was in the case of applying vision where the simulation model was

quite complex.

Theidea of having minimal input into how the communication system will work
works though is unredlistic in any real world application. Evolutionary techniques
most definitely benefit from having general problem specific knowledge as part of the
system (such as the selective positioning genetic operators, useless in any other
application not working on the type of networks developed for this project). In
hindsight it is believed that better and more complex results could have been obtained

by allowing some provision for entering details of the desired communication system
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to be used. This could be in terms of using some form of back-propagation to ‘ steer’
the evolution in the correct direction or perhaps by abstracting to common higher

level communication ideas such as ‘turn towards your left’ or ‘move towards me'.

Though neural networks worked a means of providing an object for the evolutionary
system to work upon it seems they could have been refined more to work with the
system, not just refining the system to work with the networks. Most results gave non-
standard network designs where knowledge was stored in terms of usually of one
hidden node per problem aspect instead of being distributed across the entire network
topology. Thisisto be expected since crossover implicitly requires that all knowledge
isindistinct areas so it can isolated and combined.

In general it isfelt that the project had many successes and a number of possible
extensions and aspects of possible further work.

1. Firstly the complexity of the ssimulation model needs to be extended to relieve
the pressure for the need for a overly precise fitness function. Since it has
already been implemented and tested vision would be a good concept to
incorporate into a system that requires communication.

2. Evolutionary techniques are also strong in adapting solutions to keep up with a
dynamically changing model. A number of aspects with the communication
and overall evolutionary system could be researched in terms of dynamic
problems where the communication system could not be static.

3. The neural network implementation needs to be refined so that it is more
specially suited to the strong and weak points of the evolutionary system. It
could aso include further complexity of possible network designsto
incorporate multiple hidden layers, non fully connected architectures and
recurrent links.

4. Moreinput can be added by incorporating some means of back propagation as
ameans of directing the evolution. In this way individuals evolved from one
execution could perform and make teams with individuals from other
evolution executions. Thisis feasible in simple problems where we can outline
the desired communication but in more complex problems we may not be able
to define where we need to ‘steer’ the evolution to.
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The lighter side of a thesis

On the lighter side of things this graph shows the evolution of athesis, namely this
one! Thisisagood chance for people to catch me out by checking whether | was
actually doing work on whatever night! Thanks for reading this far at least...

ideal thesis evolution-

23000 - nightmare scenario -~~~
assembling coding

21000 -
notes

18000 - coding

15000 4 lit review

realisation that | was repeating lit review!

cleaning up exams

_____________________________________
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Glossary

Chromosome DNA collection of genesthat is the encoding the evolutionary

Clones

Entity

Epoch

Gene

Genotype

Individual

Member

Phenotype

system uses. Defines exactly a corresponding network.

Members of ateam whose controllers were generated from the
single common DNA resulting in identical same deterministic
behaviour

An agent controlled by a network defined by a chromosome that acts
in asimulation to define a fitness for the corresponding
chromosome.

An instance of a single breeding within a population.

Subsection of a chromosome that defines an individual node in the
hidden layer.

The representation on an individual in terms of a chromosome
structure. This representation includes excessive information stored
in hidden node information that is not exhibited

See entity

A single DNA’s association with a specific population or sub-
population. Membership can change across sub-populations due to
migration but not from population to population. Eg A certain DNA
isamember of sub-population 3.

The representation of a chromosome in terms of the neural network
it represents. It is the phenotypic representation that is tested for the
allocation of fitness values
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Appendix A: Program Code

Main program

/* si m manager v5.2
het er ogenous popn nodel for 'follow the |eader’

Mat t hew Kel cey
Honour s Research Code.
*/

#i ncl ude "worl d3. h"

#i ncl ude "popn. h"

#i ncl ude <i ostream h> //screen out put

#i ncl ude <fstream h> //file handling

#i nclude <tinme. h> //for determining a 'randonml seed

//evolution constants
const int numXf Gens=200; !/ #generations for evol ution
const int outputFreqg=1; /1frequency of outputing fitness info to file
//mgration specific constants
const int migrationRate=100; //rate which nigration occurs,
//every mgrationRate

epoches.

[EEEEEErrrrrrrrn

/1 gl obal vari abl es

int i,j,s,p; /1 gl obal |oop variables
World *earth; //where entities are tested
Popn *| eaders, *fol | owers; /I popul ati ons (including sub popns)

voi d main(void) {
/! make the world
earth = new World();

/lllcreate the initial populations

/11 eader popn has 4 sub-popul ations each with 50 nmenbers
//mgration transfers 5 individuals at a tinme

int |eaderln = 1+gps;

int | eaderQut = nmesslLength;

//the square root of the produce of #input and #out put
/I nodes is a good starting nunber to have. *2 since
//on average only half will be active

int | eaderHi dden = (int)(2*sqrt(leaderln*| eaderQut));

| eaders = new Popn(earth, | eaderln,| eaderHi dden, | eader Qut, 4, 50, 5);
//read in fromfile a previously evol ved popul ation

/Il eader s->readFron("| eaders. pop");

//foll ower popn has 4 sub-popul ations each with 100 nenbers
//migration transfers 10 individuals at a tine

int follln = 1+gps+nmesslLengt h;

int follQut = decisions; //for NSEW

int follH dden = (int)(2*sqrt(follln*follQut));

followers = new Popn(earth,follln,follHidden,follQut, 4,100, 10);
//read in fromfile a previously evol ved popul ation
//followers->readFron{follow pop");

//random ze function
srand(455) ;

//prepare log files for |eader and followers evolved fitness val ues
of stream | Fi tVal ues("l output.txt",ios::out);
of stream f Fi t Val ues("foutput.txt",ios::out);

//do the cycle of tine
for (int time=0; tinme<numOfGens; tinme++) {
int sub; //subpopulation |oop variable
cout << tine << " of " << nunGens << "
<< ((doubl e)time/ nunm Gens)*100 << "% " << endl;
//breed | eaders
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<< "

for (sub=0; sub<leaders->nunSubPopns; sub++) {
| eader s- >br eedNext Gen(sub) ;
if (time%utputFreq==0)
| Fi t Val ues << | eader s- >aver ageRawFi t ness(sub) << ", "
<< | eader s- >hi ghest RawFi t ness( sub)

}; [//sub
//breed followers
for (sub=0; sub<followers->nunSubPopns; sub++) {
f ol | ower s- >br eedNext Gen(sub) ;
if (time%utputFreq==0)
f Fi t Val ues << fol | owers->averageRawFi t ness(sub) <<

<< followers-

>hi ghest RawFi t ness(sub) << ",";

b

I1if

}; [//lsub

//if witing to logfile this epoch need to do endl character now
if (time%utputFreq==0) ({

| Fi tVal ues << endl;

fFitVal ues << endl;

b

//migrate if its time to do so

if (time%m grationRate==0) {
cout << "performng mgration" << endl;
| eaders->migrate();
foll owers->mgrate();

b

required save these populations to file for recalling later

/1l eaders->witeTo("l eaders. pop");
/1followers->witeTo("followers.pop");

[ kill

popul ati ons

del ete | eaders;
del ete foll owers;
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World header file

/* WORLD3. H
world class for sinulating in for entity fitness evaluation
specific for | eader and foll ower problem

Mat t hew Kel cey
Honour s Research Code
*/

#i f ndef WORLD3_H
#define WORLD3_H

#i ncl ude "pos. h"
#i nclude "virtudna. h"
#include "entity. h"

//world constants
const int nunSinRuns = 5; //#times dna tested per trial (used when there is
//some undetermnistic

el enent)

const int sinmength = 10; /11ife time of the sinulation

const int sizeX = 1; /1 keep between 0 and 1 to nake inputs to networks
const int sizeY = 1; /leasy to handl e

class World {

public
Wor 1 d()
~Worl d()
voi d display(void); //display all info about all entities
voi d addEntity(eEntityType, VDNA*);
//run the simulation and return an obtained fitness val ue
doubl e runSi mul ati on(i nt, //display noves flag
int, //display entity info flag
int); //wite to file flag
private:
/lvars
Entity *pLeader, *pFol | ower;
doubl e *wor | dNoi ses; /larray to hold world noise information

//dynami c since may
have no el enents
doubl e cal cul at edFi t ness
s

#endi f
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World class definition

/* WORLD3. CPP
adapted from si mwrl d. cpp

Mat t hew Kel cey
Honour s Research Code
*/

#i ncl ude "worl d3. h"

#include "entity. h"

#i ncl ude <i ostream h> //for debuggi ng
#i ncl ude <fstream h>

#include <string. h>

#i ncl ude <mat h. h>

#i ncl ude <assert. h>

//con and decon
Worl d:: World(void) {
// make and then cl ear noises array out
wor | dNoi ses = new doubl e[ nessLengt h] ;
for (int i=0; i<messLength; i++)
wor | dNoi ses[i ] =(doubl e) 0;

/lallocate space for |eader and foll ower
pLeader = new Entity();
pFol | ower = new Entity();

/1 open leaderfile for the first tine to flush it
/I prepare file for displaying output of I|eader
of stream | eader Qut put ;
| eader Qut put . open( "l eader.txt",ios::out);
of stream fol | ower Qut put ;
fol | ower Qut put.open("follower.txt",ios::out);

}; //world

Worl d:: ~World(void) {
//free sone nenory
delete [] worl dNoi ses;
del et e pLeader;
del et e pFol | ower;

}; //~world

void World::display(void) {
/1invoke display on | eader and foll ower
pLeader - >di spl ay();
pFol | ower - >di spl ay();

//wait for user

cout << "hit an int ";

int reply; cin >> reply;
}; /1display

doubl e doubl eAbs(doubl e x) {
if (x>=0) return x;
el se return -x;

b

void World::addEntity(eEntityType type, vDNA *pDna) {
if (type==l eader)
pLeader - >const r uct Fr onDNA( pDna) ;
el se //type==foll owner
pFol | ower - >const ruct Fr onDNA( pDna) ;
H

doubl e Worl d::runSinul ation(int fDi spMves,
int fDispEntlnfo,
int fWiteToFile) {
/*
simul ati on description
first aninate is the |eader,
knows position, hears nothing, doesn't nove
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does broacast though (what should map to its position)
all other ani mates
knows position, hears | eaders output
noves (hopefully towards |eader!), doesn't broadcast
*/

//reset the calculated fitness for this sinulation run
cal cul at edFi t ness=0;

//wish to repeat whole process a nunber of times to obtain
/la fairer representation.

for (int repeat=0; repeat<nunSi mRuns; repeat++) {

//position the entities randomy, but equally spaced

Position | Pos, fPos; /11 =l eader, f=follower

bool val i dPositions=fal se;

while (!validPositions) {
//choose | eader position as randomin sqaure
| Pos. set (randDoubl e(1), randDoubl e(1));
//choose foll ower position as offset fromleader by distance 0.5
//with stepsize of 0.05 should travel 0.5 in 10 steps
doubl e angl e=randDoubl e(t woPi ) ;
f Pos. set (I Pos. x+0. 5*cos(angl e), | Pos. y+0. 5*si n(angl e));
//check if the position of the follower is valid
if (fPos.x>0 && fPos.x<l && fPos.y>0 && fPos. y<1)

val i dPosi ti ons=true;

}; //while !validPositions

pLeader ->rel ocate(l Pos, 0);

pFol | ower - >r el ocat e(f Pos, 0) ;

//run the sinulation once with these positions

for (int time=0; time<sinLength; tine++) {
//move the entities and check for wall collision
pLeader - >move( | eader, wor | dNoi ses) ;

if (pLeader->|oc. x<0) pLeader - >l oc. x=0;

if (pLeader->loc.y<0) pLeader - >l oc. y=0;

if (pLeader->l oc. x>maxX) pLeader - >l oc. x=maxX;

if (pLeader->loc.y>maxY) pLeader - >l oc. y=maxY;

pFol | ower - >nove(f ol | ower, wor | dNoi ses);

if (pFoll ower->loc.x<0) pFol | ower - >l oc. x=0;
if (pFollower->loc.y<0) pFol | ower - > oc. y=0;
if (pFollower->loc.x>maxX) pFol | ower - >l oc. x=maxX;

if (pFollower->loc.y>maxY) pFol | ower - >l oc. y=naxY;

/lupdate fitness val ue
cal cul at edFi t ness += plLeader->| oc. di st To( pFol | ower - >| oc) ;
}; //tine | oop
}; //repeat |oop

return (doubl e)cal cul at edFi t ness/ nunSi nRuns;
}; //runSinul ation
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Population header file

/* Popn. h: popul ation cl ass
i ncl udes
preformng of evolutionary steps
sel ection

crossover, nutation and inversion of dna strings
fitness scaling

Mat t hew Kel cey
Honour s Research Code.
*/

#i f ndef POPN_H
#define POPN_H

#i ncl ude "virtuDNA. h"
#i ncl ude "worl d3. h"

//sinmulation prob chances (values 0-1, O-never, 0.5 50% 2-always)
const doubl e introRandom=0. 3; //add random nenber to popn each gen, to replace worst
const doubl e pairw seElitisme2; //each next gen nust beat the value in the slot
const double elitisnmF2; /1 highest entity is saved in each

generation

//fitness calcul ation things
const doubl e scal er=2; /lafter rescaling fitness,

/I maxFi tness =
scal er*aver ageFi t ness

class Popn {
publi c:
//constructor and destructor
Popn(Wor | d*, /I need to know where the population is
int,int,int, //ins, maxhi ddens and outs of popn nenbers
int,int,int); //nunSubPopns, subPopnSize, m grationNunber;

~Popn();
/linterface functions
voi d display(int); /linvoke display on all vDNA nenbers,
//0=all info,
1=fitness only
vDNA* fetch(int,int); //return with a ptr to the ith nmenber of
//the jth subpopn
vDNA* fetchElite(int); /lreturn the elite of a subpopn
voi d breedNext Gen(int); /| perform breedi ng on sth subpopul ati on
void mgrate(void); //mgrate individuals cyclically
vDNA* sel ect (void); //sel ect a menber fromthe whole
popul ati on
voi d testAll Menbers(int); //test all menbers of a subpopn

voi d cal cRawFi tness (vDNA*);//cal cul ate the fitness of a popn nenber
void dispElite(int); //display info on elite nenber of given subpopn

doubl e averageRawFi tness(int); //int is which sub popn
doubl e hi ghest RawFi tness(int); //int is which sub popn

//stream ng functions (return success or otherw se)
int witeTo(char*); //wite the popn to a file
int readFron{char*); //read the popn froma file

/lvariables that once were constants
int subPopnSi ze;

i nt nunSubPopns;

int mgrationNunber;

private:
/I popn variabl es, nmost dynamically defined once popul ation
/'l sizes known gathered constuctor.

Worl d *pHonePl anet ; //where this populatoin is (needed for
testing)

doubl e **sel ect Array; //selection arrays for each subpopn

doubl e *gl obal Sel ect Array; //the gloabl selection array
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int ins, maxH ddens, outs, dnaLength; //dna variables for menbers in this
popul ati on

int *eliteMenber; //array of sub-population elite nenbers
vDNA ***pDna; //actual menbers in the popul ation
vDNA **pTenpPopn; /I need a tenp array for hol di ng nextgen nenbers

//and for usage in migration
int fNeedd obal Recal c; //flag to indicate that a subpopn has changed its

//selection array and so
gl obal array must be updated

//private functions needed to be called only by nenber functions

vDNA* sel ect (int); //select a nenber from
subpopul ation s

voi d cal cFitnessStats(Fitness,int); //determine elite menber for subpopn

voi d prepareSel ectionArray(int); /I needed for selection of nmenbers for a
subpopn

}s

#endi f
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Population class definition

/* popn. cpp: inplenmentation of the popn class

Mat t hew Kel cey
Honour s Research Code
*/

#i ncl ude "popn. h"

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <assert. h>

voi d Popn::dispElite(int i) {
pDnafi][eliteMenber[i]]->display(0)

/*procedure for activation of a flag

chance=0 => always returns 0
chance=0.5 => returns 1 50%of the tine
chance=2 => always returns 1 */

inline int active(double chance) {
return (randDoubl e(1) <chance)
b

//return the average raw fitness of a specified sub popul ation
doubl e Popn:: aver ageRawFi t ness(int ws) {
doubl e total =0
for (int p=0; p<subPopnSize; p++)
total +=pDna[ws] [ p] - >fi tness[raw]
return total/subPopnSi ze

b

//return the highest raw fitness of a specified sub popul ation
doubl e Popn: : hi ghest RawFi t ness(int ws) {
i nt highest=0
doubl e hi ghest RF=pDna[ ws] [ 0] ->fi tness[raw]
for (int p=1; p<subPopnSize; p++)
if (pDna[ws][p]->fitness[raw] > highestRF) {
hi ghest =p;
hi ghest RF=pDna[ ws] [ p] - >fi tness[raw]

return hfghestRF
H

//display the details of the DNA strings in the popul ation
voi d Popn::display(int disp) { //0=all info , 1=fitness values only
int s,p;
for (s=0; s<nunBSubPopns; s++) {
cout << "***" << 5 << "th subpopn" << endl
for (p=0; p<subPopnSize; p++) {
cout << "nenber " << p << " of subpop " << s << endl
pDna[ s] [ p] - >di spl ay(di sp);

b

//heres the selection arrays
cout << "and the selection arrays are " << endl
for (s=0; s<nunBSubPopns; s++) {
for (p=0; p<subPopnSize; p++)
cout << selectArray[s][p] << ",";
cout << endl
b
b

/I popul ati on constructor
Popn: : Popn(World *pWhichworld, int ins_, int naxHi ddens_, int outs_,
int nunSub, int subSize, int mgrationNunber) {
int s,p; //1oop variables

!/ keep rel evant val ues
ins = ins_;

maxHi ddens = maxHi ddens_;
outs = outs_;
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nunSubPopns = nunSub;
subPopnSi ze = subSi ze;
pHormePl anet = pWhi chWrl d;

//dna length used so often store it also
dnalLength = (1+i ns+outs)*maxHi ddens;

//construct the dynami c arrays needed for popul ati on nanagenent
/lallocate space for elite nenber array
el iteMenber = new i nt[ nunSubPopns];
/lallocate space for select array
sel ect Array = new doubl e*[ nunSubPopns] ;
for (s=0; s<nunBSubPopns; s++)
sel ect Array[s] = new doubl e[ subPopnSi ze] ;
/lallocate space for global selection array
gl obal Sel ect Array = new doubl e[ subPopnSi ze* nunSubPopns] ;
/lallocate space for popul ati on dna pointers
pDna = new vDNA**[ nunSubPopns] ;
for (s=0; s<nunBSubPopns; s++)
pDna[s] = new vDNA*[ subPopnSi ze] ;
/lallocate space for tenporary sub popul ation
pTenpPopn = new vDNA*[ subPopnSi ze] ;

/lcreate the individual nenbers
for (p=0; p<subPopnSize; p++) {

pTenmpPopn[ p] = new vDNA(i ns, maxHi ddens, outs);
for (s=0; s<nunBSubPopns; s++)
pDna[ s] [ p] = new vDNA(i ns, maxHi ddens, outs);

b

//test nenbers of each subpopn to obtain initial fitness val ues
for (s=0; s<nunBSubPopns; s++)
test Al | Menbers(s);
}; /lcon

//destructor, need to free up heaps of dynamically defined nenory
Popn: : ~Popn() {
int p,s; //loop variables

/1kill all the menbers
for (p=0; p<subPopnSize; p++) {
del ete pTenpPopn[ p];
for (s=0; s<nunBSubPopns; s++)
del ete pbDna[s][p];
b

//remove all space reserved for dynam c arrays
delete [] eliteMenber;
delete [] gl obal Sel ect Array;
delete [] pTenpPopn;
for (s=0; s<nunBSubPopns; s++) {
delete [] selectArray[s];
delete [] pDna[s];
Y; Ils
}; [//destr

//sel ect a menber from subpopul ation s
/1if offset is nonzero then use this value instead of a random val ue
//more intelligent selection rountine. Q(n) for whole popul ation sel ection
vDNA* Popn: : sel ect (i nt whichSpecies) { //s

// choose the random position

doubl e pos=randDoubl e(sel ect Array[ whi chSpeci es] [ subPopnSi ze-1]);

I/ check for boundary cases,
/lalso ensures s[0] < p < s[n-2]
if (pos<=sel ect Array[whi chSpeci es][0])

return pDna[ whi chSpeci es][0]; //the first menber
i f (pos>=sel ect Array[whi chSpeci es] [ subPopnSi ze- 2] )

return pDna[ whi chSpeci es] [ subPopnSi ze- 1] ; //the | ast menber
//make the inital guess at position, = position/average

int guess=(int)(pos/(sel ectArray[whichSpecies][subPopnSize-1]
/ subPopnSi ze) ) ;

//move until its found
while (1) {
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//check if the guess is now correct

if ((pos>sel ect Array[whi chSpeci es] [ guess-1])
&& (pos<=sel ect Array[ whi chSpeci es] [ guess]))
return pDna[ whi chSpeci es][guess]; //found it!

//otherw se try guesing one way or the other

if (pos>sel ect Array[ whi chSpeci es] [ guess])
guess++; //nmove to right one place

el se
guess--; //move to left one place

Y; //while
b

/*/ naive selection rountine, Q(n*n) for whole popul ation sel ection
int ol dRoul etteSel ect (double total, int whichSpecies) {
i nt whi ch=0;
doubl e wher e=randDoubl e(total);
whi | e ((wher e>=pDna[ whi ch] [ whi chSpeci es]->fitness[scal ed])
&& (whi ch<subPopnSi ze-1))
wher e- =pDna[ whi ch++] [ whi chSpeci es] ->fi tness[scal ed] ;
return which;
}s /I not hi ng
*/

//sel ect used outside the class by others
//returns a random nenber fromthe entire popul ation
vDNA* Popn: : sel ect (void) {

/11/]sinple naive approach

return sel ect (randl nt (nunSubPopns));

b

//mgrate starting at a random point.
/1 (do nodul o subPopnSi ze) to treat cyclically.
voi d Popn::mgrate(void) {
int i,j; /11 oop variabl es
int |ower; /11 ower bound of migration range.

/'l choose | ower bound;
| ower = randl nt (subPopnSi ze);

//remenber the zeroth popn in a tenp array
for (j=lower; j<lower+m grationNunber; j++)
pDna[ 0] [ ] “subPopnSi ze] - >copyl nt o( pTenpPopn[ j %subPopnSi ze]) ;

//create tenporary popn for noving groups
//starting from 2nd popn (popn group 1)
for (i=1; i<nunSubPopns; i++)
//move the ith popn into the i-1th popul ation
for (j=lower; j<lower+m grationNunber; j++)
pDnali][j YsubPopnSi ze] - >copyl nto(pDna[i-1][j %subPopnSi ze]) ;

//move the zeroth group into the 'nunBpecies'th popn
for (j=lower; j<lower+m grationNunber; j++)
pTenpPopn[ j %subPopnSi ze] - >
copy!l nt o( pDna[ nunSubPopns- 1] [ j %subPopnSi ze] ) ;

//since nenbers have been noved need to reeval uate
//the selection array after rescaling the fitness
//val ues for each subpopn
for (int s=0; s<nunBSubPopns; s++)
prepareSel ecti onArray(s);
b

voi d Popn:: cal cRawFi t ness(vDNA *testee, eEntityType | eaderOrFollower) {
//testee->fitness[raw] =(fl oat)O;

/1 RUN SI MULATI ON

if (testee->nunti ddens()==0) //invalid network
testee->fitness[raw] =0;

else { //valid network with one or nore hidden nodes
//clear current fitness val ue
testee -> fitness[raw] = (float)O;
//add the testee as a | eader or follower
pHormePl anet - >addEnti ty(| eader Or Fol | ower, t est ee)
//run the simulation a nunber of tines,
//each time with a new patner
for (sinme0; sinmknunSi nRuns; sim+) {
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}s

if (1eaderO Fol |l ower ==| eader)

pHormePl anet - >addEnti ty(fol | ower, some other nenber)

el se

pHormePl anet - >addEnti ty(| eader, sonme ot her nenber)

//award all fitness to the testee

testee -> fitness[raw] += pHomePl anet->runSi nul ati on(0, 0, 0)

}; //for sim
Il average fitness val ue
testee -> fitness[raw] /= (doubl e)nunSi nRuns
}; Ilelse
I
/*/ TRIVI AL TEST OF ONE | NPUT
/1 MUST HAVE 4i nputs AND 3out puts
Network *brain = new Network(testee)
doubl e inputs[4] = {1,0.2,0.3,-0. 3};
doubl e trueVal ues[ 3] {0.5,-0.3,0.4};
testee->fitness[raw br ai n- >error Magni t ude(i nput s, trueVal ues)

del ete brain;
11/

/*/ TEST BY ABILITY TO COPY | NPUT STRI NG ON QUTPUT
testee->fitness[raw] =(float)0
// make controller
Network *brain = new Network(testee)
/lcreate arrays for testing
doubl e *i nputs = new doubl e[ t est ee->i ns];
doubl e *trueVal ues = new doubl e[t est ee->out s] ;
inputs[0]=1; //for bias terns
//test simLength tines
for (int t=0; t<simLength; t++) {

//create sone random i nputs

for (int i=1; i<ins; i++) {

i nput s[i]=negPos()
trueVal ues[i-1]=inputs[i];

I

//find errorMagni tude on these inputs

testee->fitness[raw] +=brai n->error Magni t ude(i nputs, trueVal ues)
b
/linvert fitness values (we want low errors to nean high fitness)
testee->fitness[raw] =1/testee->fitness[raw]
//free nenory
del ete brain;
delete [] inputs;
delete [] trueVal ues
11/

/*] TEST BY ALLOCATI NG FI TNESS AS SUM OF DNA STRI NG VALUES

testee->fitness[raw] =(float)0

for (int i=0; i<dnaLength; i++)
testee->fitness[raw] +=t est ee->pi ece[i];

11/

/*/ TEST ON TI ME SERI ES ERROR MAGNI TUDE
/lreset old fitness val ue
testee->fitness[raw] =(float)0
// make controller from dna
Network *controller = new Network(testee)
//test on sinple tine series
for (int i=0; i<seriesLength; i++)

control | er->addToRaw control | er

->errorMagni tude(serieslnputs[i], seriesTrueVal ues[i]))

//we require snall fitness values indicate a fit individual
testee->fitness[raw] =1/testee->fitness[raw]
cout << "fitness is " << testee->fitness[raw] << endl
//free sone nenory
del ete controller
11/

//first thing to do when all have been created
voi d Popn::testAll Menbers(int ws) {

cout << "testing all nenbers of subpopn " << ws << endl
for (int s=0; s<nunBSubPopns; s++)
for (int p=0; p<subPopnSize; p++)
cal cRawFi t ness(pDna[s][p])
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//prep selection array (including conversion from
//raw >scal ed fitness val ues
prepar eSel ecti onArray(ws);

b

//need to ensure raw fitness val ues have been rescal ed to scal ed val ues
voi d Popn:: prepareSel ectionArray(int ws) {

int p;

/11/first need to convert raw val ues to scal ed val ues

/Ineed to check all values are non-negative
//if some are not rescale on the nost negative value while
//retaining the correct level of proportionality
doubl e nost Negative=0; //set to zero value to check agai nst
for (p=0; p<subPopnSize; p++) {
if (pDna[ws][p]->fitness[raw <npst Negative)
nmost Negat i ve=pDna[ws] [ p] ->fi tness[raw;
//cout << "mm" << nostNegative << " ";
Yoo p
if (npstNegativel=0) //ie value was set previously
for (p=0; p<subPopnSize; p++)
pDna[ws] [ p]->fitness[raw] -= npbstNegative;

//find the average and hi ghest val ue

doubl e highestF = pDna[ 0] [ws]->fitness[raw;
double total F = highestF; //ie just first value
doubl e aver ageF;

el i t eMenber [ ws] =0;

/1go through rest of the popn and get actual
/' average and hi ghest raw val ues
for (p=1; p<subPopnSize; p++) {
total F += pDna[ws][p]->fitness[raw;
//check if this ones the elite menber
if (pDna[ws][p]->fitness[raw] > highestF) {
hi ghest F = pDna[ws] [p]->fitness[raw];
el i t eMenber [ ws] =p;

b
I
//obtain average fromtotal
aver ageF = (doubl e)total F/ subPopnSi ze;

//cal cul ate constants
doubl e sl ope=(scal er-1)*averageF/ ( hi ghest F-aver ageF) ;
doubl e const ant =aver ageF* ( hi ghest F- scal er *aver ageF)
/ (hi ghest F-
aver ageF) ;
/I need to keep tabs on negative val ues
/1if any exist then shift all so all non-negative
doubl e | owest NegVal ue=0;
/lrescale all other values using constants
I/ checking for negative val ues
for (p=0; p<subPopnSize; p++) {
pDna[ ws] [ p] ->fitness[scal ed] =
sl ope*pDna[ ws] [ p] - >fi t ness[raw] +const ant;
/I make sure none are negative due to scaling, otherw se
/lroulette will fail
if (pDna[ws][p]->fitness[scal ed] <0)
if (pDna[ws][p]->fitness[scal ed] <l owest NegVal ue)
| owest NegVal ue=pDna[ ws] [ p] - >fi t ness[ scal ed];
Y, Ilfor

/1if there are negatives then shift all values
//to meke the npbst negative zero
if (lowestNegValue!=0) //ie it has changed, by being set above
for (p=0; p<subPopnSize; p++)
pDna[ ws] [ p] ->fitness[scal ed] -= | owest NegVal ue;
/I note: even after rescaling the elite nenber will stay the sane

/11/1/then create actual selection array

//set first nenber to be first fitness val ue

sel ect Array[ws][0] = pDna[ws][0]->fitness[scal ed];

/lallocate follow ng ones as the suns

for (int i=1; i<subPopnSize; i++)
selectArray[ws][i] = selectArray[ws][i-1] +
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pDnafws][i]-
>fitness[scal ed];

//since this selection array has changed will
//need to recalc the global selection array
f Needd obal Recal c=1;

b

vDNA* Popn: : fetch(int whichSpecies, int whichMenber) {
return pDna[ whi chSpeci es] [ whi chMenber] ;
}

vbNA* Popn: :fetchElite(int whichSpecies) {
return pDna[ whi chSpeci es][eliteMenber[whi chSpecies]];
b

/| perform breedi ng on sth subpopul ati on
voi d Popn:: breedNext Gen(int ws) {
vDNA *parent;
int p; //loop iter
int startFron=0; //will start here if elite selection happens

//do elite menber automatic inclusion

if (active(elitism) {
pDna[ ws] [ el i t eMenber [ws]] - >copyl nt o( pTenpPopn[ 0] ) ;
startFronel; //don't want to copy over the new elite menber

b

//do the actual breeding of each nenber
for (p=startFrom p<subPopnSize; p++) {
//sel ect a parent menber

parent = sel ect(ws);
/lcopy it to the next gen
par ent - >copyl nt o( pTenpPopn[ p] ) ;

//test for crossover & nutation
int fChanged=false; //need to keep since
/1 may need to reevaluate fitness
if (active(crossOverRate)) {
/lcrossover of parent and another sel ected parent
pTenmpPopn[ p] - >cr ossOver ( par ent, sel ect (ws), 2);
f Changed=t r ue;

{‘ (active(nmutationRate)) {
pTenmpPopn[ p] - >mut ate() ;
f Changed=t r ue;

{‘ (active(inversionRate)) {
pTenpPopn[ p] - >i nversi on();
f Changed=t r ue;

b

/1if its changed then reevaluate its fitness
if (fChanged)
cal cRawFi t ness(pTenpPopn[ p]);

//do pairwise elitismtests
if (fChanged &&
active(pairwiseElitism &&
(pTenpPopn[ p] ->fitness[raw] < parent->fitness[raw]))
/lreplace old parent in this slot
par ent - >copyl nt o( pTenpPopn[ p] ) ;
b

/I perform new random nenber inclusion to overwite worse menber
if (active(introRandom) {
//find the worst menber
int worst = 0; //for now
doubl e wor st Fi tness = pTenpPopn[0]->fitness[raw;
for (p=1; p<subPopnSize; p++)
if (pTempPopn[p]->fitness[raw] < worstFitness) {
wor st = p;
wor st Fi t ness = pTenpPopn[ p] ->fitness[raw;
Yillif
//replace it with a new random dna
pTenmpPopn[ wor st] - >r andomi zeVal ues();
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b

//evaluate this new nenbers fitness
cal cRawFi t ness(pTenpPopn[worst])
b

// copy next gen back to breedi ng poo
for (p=0; p<subPopnSize; p++)
pTenpPopn[ p] - >copyl nt o(pDnafws] [p] ) ;

/lrescale fitness values and construct new sel ection array
prepar eSel ecti onArray(ws);

//so at end of breeding epoch the selection array
//should be up to date (for use by other popul ations
//when asking to choose a new nenber)

/] stream ng
int Popn::witeTo(char *fileNanme) {

b

//open the file for witing
of stream out put (fil eNane, i os::out)
if (loutput) {
cout << "error opening " << fileName << " for witing"

return O
b
//wite some general popn info (used for checking)
out put << nunBubPopns << " " << subPopnSize
<< " " << dnaLength << " ";

//wite all the menmbers data out
for (int s=0; s<nunBSubPopns; s++)
for (int p=0; p<subPopnSize; p++) {
for (int 1=0; |<dnaLength; |++)
out put << pDna[s][p]->piece[l]<< " ";
output << pDna[s][p]->fitness[0] << " "
output << pDna[s][p]->fitness[1] << " "
b
out put << endl
/1if this far then success
return 1

int Popn::readFron(char *fileNane) {

//open the file for reading
ifstreaminput(fileName,ios::in)
if (Yinput) {
cout << "error opening " << fileName << " for reading"
return O
b
//read in general popn info
i nt subpop, popsi ze, dnal en
i nput >> subpop >> popsize >> dnal en
// conpare against runtinme constants
if ((subpop!=nunSubPopns) || (popsi ze! =subPopnSi ze)
| | (dnaLengt h! =dnal en)) {
cout << "error in file, differing constants" << endl
cout << "nunmBubPopns :" << subpop

<< endl

<< endl

<< " should be " << nunBSubPopns << endl

cout << "subPopnSize :" << popsize

<< " should be " << subPopnSi ze << endl

cout << "dna length :" << dnalen
<< " should be " << dnalLength
return O

b

//read all the info in
for (int s=0; s<nunBSubPopns; s++)
for (int p=0; p<subPopnSize; p++) {
for (int 1=0; |I<dnaLength; |++)
i nput >> pDna[s][p]->piece[l];
i nput >> pDna[s][p]->fitness[0];
i nput >> pDna[s][p]->fitness[1];
b
/lrecreate the selection arrays
for (s=0; s<nunBSubPopns; s++)
prepareSel ecti onArray(s)

/1if this far then success

<< endl
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return 1;
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Virtual DNA header file

/* VI RTUDNA. H
by Matthew Kel cey
Honour s Research Code
*
/

#i f ndef VI RTUDNA_H
#define VI RTUDNA_H

#include <stdlib.h> //for random
#i ncl ude <mat h. h> //for sqgrt

//dna length flags

const int nunEyes = O; /1 nunber of eyes, 0=no eyes
const int nunCol our Conps = 3; // nunber of col our

const int gps = 2

/1 2=

conmponentes, RGB
xy coords, 0=no gps

const int nessLength = 2; /1 length of output consider to be the

/1 message, O0=>no hearing

const int decisions = 4; /'l 4=>nsew, 3=>|rs

/11/breeding constants

//chance of mutation

const float nutationRate = (float)O0.01
//relative odds of swapping node active
const int nutateActive =1

/lrelative odds of changing a weight (includes bias terns)

const int nutateWight = 4
//this is the prob of a new val ue opposed

to

|/ gaussi an changi ng given a nutation is occuring

const float newal ueOr Gauss = (float)0.2

// chance of crossover
const float crossOverRate = (float)0.8

//rel. odds of crossover point on active position

const int xOverNodes = 3

//rel. odds of crossover point on first outgoing weight

const int xOverlnsQuts = 2

/lrel. oods of crossover point anywhere (could be one of the above though)

const int xOver Anywhere = 1;

// chance of inversion
/lacts only on genes
const float inversionRate = (float)0.001

//to return a random float between -1 & 1
inline doubl e negPos(void) {

return ((doubl e)rand())/RAND_MAX*2-1

b

//return a random nunber between 0 and max (as a doubl e)

inline double randDoubl e(doubl e max) {

return (doubl e) (rand() *max/ RAND_MAX) ;

s
//return an int from 0->max-1

inline int randlint(int nmax) {
return rand() %rax
H

enum Fi tness {raw, scal ed}

class vDNA {
public

//return how many hidden nodes this dna represents

int nunmHi ddens(voi d)
//set all pieces to random val ues
voi d randomni zeVal ues(voi d)

// defaul tconstructor, dna sizes defined by constants
VvDNA(int,int,int); //ins, nmaxHi ddens, outs

//default decon
~VDNA() ;

// copy con
vDNA( vDNAR) ;

a1 |



| Co-evolution of cooperative behaviour

|/ debuggi ng di splayer ints are inputs and outputs (for formatting)
void display(int); //0=all, 1=just fitness val ues

// copi er, why doesn't copycon work?

voi d copyl nt o( vDNA*) ;

//mutate the dna

int nutate(void);

//crossover things

int newCrossOver Point(); //give a new crossover point
int crossOver (vDNA*, /] ot her parent
vDNA*, //child
int); /I nunber of crossover points

/linversion functions
void swap(int,int); //swap two genes in strand
voi d inversion(void)

/lvari abl es
doubl e *pi ece; /lactual weights array
doubl e fitness[2]; //two fitness values, raw and scal ed
int nutateTotal ;//= nmutateActive+(genelLength-1)*nut at eWei ght;
int xTotal;// = xOverNodes+xOver | nsQut s+geneLengt h*xOver Anywher e
int ins, maxH ddens, outs
int genelLength,length
H

#endi f
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Virtual DNA class definition

/* VI RTUDNA. CPP
by Matthew Kel cey
Honour s Research Code
*
/

#i ncl ude "virtudna. h"
#i ncl ude <i ostream h> //for debuggi ng
#i nclude "math. h"

/Ineed this since the 'log" in gaussian dies when it gets a zero
inline double spRand(void) {
doubl e tenp=randDoubl e( (doubl e) 1)
if (tenp!=0)
return tenp
el se
return 0.000001
b
i nline doubl e newGaussi an(doubl e nean, float stdDev) ({
return sqrt(-2.0 * log(spRand()))
*cos(randDoubl e( (doubl e) 6. 2831853072) )
*st dDev+nean

b

//return the nunber of hidden nodes this dna woul d have active
int vDNA: : nunHi ddens(void) {
int nunHi ddens=0
for(int i=0; i<length; i+=geneLength)
//check active positions
nurHi ddens += (pi ece[i]>0)
return nunHi ddens;

b

/I nuke to randonise all val ues
voi d vDNA: : randomi zeVal ues(voi d) {
//put random val ues in dna
for (int i=0; i<length; i++)
piece[i] = (float)(negPos()/2)
/lzero fitness val ues
fitness[0] = fitness[1] = (float)O
b

// constructor
vDNA: : vDNA(int ins_, int maxH ddens_, int outs_) {
/'l remenber constants

ins=ins_;

maxHi ddens=maxHi ddens_;

out s=outs_;

//work out a few val ues accessed often to optimse tine
genelLength = ins+outs+1

| ength = genelLengt h* maxHi ddens

mut at eTot al = nut at eActi ve+(genelLengt h- 1) *mut at eWei ght ;

xTotal = xOver Nodes+xOver | nsQut s+geneLengt h*xOver Anywher e
//declare piece array and initialise it

pi ece = new doubl e[l ength];

random zeVal ues()

b

/[ decon

VDNA: : ~vDNA()
//only need to deal |l ocate space for piece array
delete [] piece

b

// copy functions
vDNA: : vDNA(VvDNA &copy) {
/ldirectly copy everything across
for (int i=0; i<length; i++)
pi ece[i] = copy.piece[il];
fitness[0] =copy.fitness[O0];
fitness[ 1] =copy.fitness[1];
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voi d vDNA: : copyl nt o(vDNA *pDest Dna) {
for (int i=0; i<length; i++)
pDest Dna- >pi ece[ i ] =pi ece[i];
pDest Dna- >fi t ness[ 0] =fi t ness[ 0] ;
pDest Dna- >fi t ness[ 1] =fi t ness[ 1];
}; //copylnto

[/ mutation
int vDNA: :nmutate(void) {
/1 deci de which gene to nutate
int gene = randl nt (maxHi ddens) *genelLengt h;

/1 deci de which part of that gene to nutate and thus the offset
int offset;
int part = randlnt(nutateTotal);
if (part<mutateActive)
//nmutate active position
of f set =0;
el se //mutating a wei ght val ue
of f set =1+r andl nt (i ns+outs) ;

/] deci de on mutation type
i f (randDoubl e((doubl e) 1) <newal ueOr Gauss)
{ //use gaussian nutation
float stdDev=(float)O0.1;
//then actually nutate
pi ece[ gene+of fset] =
(doubl e) newGaussi an( pi ece[ gene+of fset], st dDev);

el se //whol e new val ue
pi ece[ gene+of f set ] =(doubl e) negPos() ;

//must return success, useful having return for testing
//mutation by returning nutation position when needed
return 1;

}; //mutate

//crossover things
int vDNA: : newCr ossOver Poi nt (voi d) {
/I choose which node to have crossover point on
int position = randl nt(nmaxH ddens)*genelLengt h;
// deci de where on that node it's going to be
int where = randlnt(xTotal);
i f (where<xOver Nodes)
//crossover at active position
return position;
i f (where<xOver Nodes+xOver | nsQut s)
/lcrossover at first outgoing weight
return position+i ns+1;
//crossover anywhere
return position+randl nt(geneLength);
}; 1/ newCrossOver Poi nt

/I breed based on crossover, int is nunber of crossover points
int vVDNA: :crossOver (VDNA *parent A, vDNA *parentB, int nunPoints) {
// make sure not too nmany crossover points!
i f (nunPoi nt s>=| engt h)
nunPoi nt s=l engt h- 1;

//work out distinct crossover points
int *crossOver = new int[nunPoints]; //array for crossover points
crossOver[0] = randlnt(length);
int which=1; //which crossover point we are deciding
whi | e (whi ch! =nunPoi nts) {
//give a random val ue
crossOver [ whi ch] = newCrossOver Point ();
//check if it's distinct from previous ones
int saneAs=f al se; /' assume not sanme as any ot her
//yet and show ot herw se
for (int j=0; j<which; j++)
if (crossOver[which]==crossOver[j])
sanmeAs=tr ue,
/1if its not the same go to chossing next one
if (!sanmeAs)
whi ch++;
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/1 define pChilds arrays
int parentAToChild = 1; //ie parentA giving gene to pChild A
for (int i=0; i<length; i++) {
/lis this a crossover point? conpare against all crossovers
int test=0;
whi |l e (test<nunPoints) {
if (i==crossOver[test]) {
/1 swap whi ch parent coming from
parent AToChi | d = ! parent AToChi | d
t est =nunPoi nt s;
b
test ++;

b

//transfer actual dna strand information
i f (parentAToChil d)
pi ece[i] = parentA->piece[i];
el se //!parent AToChil dA
pi ece[i] = parentB->piece[i];
Y, Ilfor

//free nenory
delete [] crossOver
//canme out ok
return 1

b

/linversion things
//swap two genes, used during inversion
voi d VDNA: : swap(int a,int b) {
int i; //loop iterator
doubl e *tenp=new doubl e [geneLength]; //for tenp storage
//store gene 'a' tenporarily
for (i=0; i<geneLength; i++)
tenp[i]=pi ece[ a*genelLengt h+i ]
//copy gene 'b' into gene 'a'
for (i=0; i<geneLength; i++)
pi ece[ a*genelLengt h+i ] =pi ece[ b*geneLengt h+i ]
//copy tenp stored gene into gene 'b
for (i=0; i<geneLength; i++)
pi ece[ b*geneLengt h+i ] =tenp[i];
//free nenory
delete [] tenp;
}; 1/ swap

/lcyclic inversion
voi d vDNA: :inversion(void) {
[/ pick distinct inversion positions
int ptl=randlnt(maxHi ddens)
int pt2=ptl; //set equal to force followi ng |loop at |east once
whi l e (pt1l==pt2)
pt 2=r and| nt ( maxHi ddens)
//do actual inversion between ptl & pt2
while (ptl!=pt2) {
//do one positions swap
swap(ptl, pt2);
//check to see if done by pts being within one of each other
/leither nornally, or in the boundary case
if ((pt2-ptl==1)]|]| (pt1l-pt2==naxH ddens-1)) ({
//force finish of |oop

pt 1=pt 2;
Y It
el se {
/Inot finished so nmove points closer, nmodul o maxHi ddens
pt1++; if (ptl==nmaxHi ddens) pt 1=0
pt2--; if (pt2<0) pt 2=maxHi ddens- 1
}; Ilelse
}; /lwhile

}; //linversion

/1 for debuggging
void vDNA: : display(int w) { //w=0, display all, w=1 display only fitness val ues
if (w=1)
for (int i=0; i<length; i++) {
cout << piece[i] << " ";
if ((i+1)9%genelLength==0) cout << endl
b
I
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cout << "rawFit=" << fitness[0] << " scaledFit=" << fitness[1] << " ";
cout << "nunHi ddens=" << nunHi ddens() << endl

int y; cin>>y
}; //ldisplay
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Position header and class definitions

/* PCS. H
data structure and procedures for 2d distances
Mat t hew Kel cey
Honour s Research Code

*/

#i f ndef POS_H
#define POS_H

#include <math.h> //for sqrt
#i ncl ude <i ostream h>

class Position {
friend ostream &oper at or <<(ostream &out put, const Position & oc) {
cout << "(" << loc.x << "," << loc.y << ")";
return output;
publi c:
Position() { x=y=(double)0; }
Posi ti on(doubl e nx, double ny) { x=nx; y=ny; }
inline double distTo(Position other) {
return sqrt((x-other.x)*(x-other.x)+(y-other.y)*(y-other.y))

voi d set(double nx, double ny) { x=nx; y=ny; }
doubl e x,vy;

#endi f
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Entity header file

/* ENTITY. H
structure for holding information about each entity
by Matthew Kel cey
Honour s Research Code

*/

#i fndef ENTITY_H
#define ENTITY_H

#i ncl ude "virtuDNA. h"
#i ncl ude "neural 2. h"
#i ncl ude "pos. h"

#i ncl ude "col our. h"

const double turnAngle = 0.1; //radians
const doubl e stepSize = 0.05; //size of world is 0->1
|/ (easier for scaling purposes)
/lentity vision constants
const double pi = 3.14159265358
const doubl e twoPi =pi *2
const double fieldOView = (double)pi/2;//90deg
const double gamma = 0.5; //1=normal brightness, <1 nore, >1 |ess
const int fTracking = 1; //wite vision to output vision.txt

enum eDi spl ay {locationlnfo,visionlnfo}; //for displaying entity val ues
enum eEntityType {leader, follower};

A AR R EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

gridis laid out as....

0,0 maxX, 0 = acw
r = ccw
pi/2
pi 0 have to show eyes in reverse order
3pi/2

0, maxY maxX, maxyY

LEER AR EEEEEEEEEEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEY]

class Entity {

public
//construct with null val ues
Entity();
//default decon
~Entity();
//default entity from dna
voi d const ruct Fr onDNA( vDNA*)
/linit all values
void init(void)

!/ snapshot vi sion

voi d snapShotVision(Entity*); //give last entity in list
/I1listen for sounds

void listen(double[]); //noises fromworld

//cal cul ate the sweep angle to another position
doubl e sweepAngl eTo( Posi ti on)
//get entity to think, then nbve, then return the 'nove

/1 eg 'n" (north) or '"I' (left) for possible displaying
char nove(eEntityType, //denote whether |eader or not
doubl e[]); //world noise array for passing nessages
//display info on entity
voi d display(void); //display all infornation
voi d di spl ay(eDi spl ay); //location=all |ocation spec variables

//vision=just the vision

//put entity to a new |l ocation and give direction
voi d rel ocat e(Position, double)
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1
#endi f

//change an entities col our
voi d changeCol our ( Col our)
//reset the raw fitness val ue
voi d resetFi tness(void)

/lentity variabl es

//eEntityType type; /lentity is aninmate or inaninmate

Net wor k *pController; //controller

Entity *pNextEntity; / /' used when appl ying vision calcs

Position | oc; /1l ocation

doubl e direction; //direction facing

Col our 1 ooks; //colour of the entity

vDNA *pSour ceDna; /Ineed this pointer to allocate fitness
//the following 3 are dynamically defined (since inaninmates dont use them
Col our *vi sion; //what the entity can see
//these two are dynami c since nessLength nay =0

doubl e *heari ng; //what the entity hears

doubl e *voi ce; //what the entity says
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Entity class definition

/* ENTI TY. CPP

class defn for entities

last nodified 4/5 for initial witing
*/

#include "entity. h"

#i nclude "fstream h"

#i ncl ude <assert. h>

#i ncl ude <mat h. h> //for sin & cos
#i ncl ude <iostreamh> //for debugging info

void Entity::display(eDisplay | ocOVision) {
if (1ocOVision==|ocationlnfo) {
cout << "entity is ";
if (pController==NULL) cout << "in"
cout << "animate @ << | oc
<< " f:" << (double)direction
<< " colour is " << | ooks << endl

el se {//do vision
cout << "can see ";
for (int i=nunEyes-1; i>1; i--)
cout << i << ":" << vwvision[i] << " "
if (nuntEyes==0)
cout << "nothing, this entity is blind";
cout << endl

//do hearing
cout << "can hear ";
for (i=0; i<nmessLength; i++)
cout << i << ":" << hearing[i] << " ";
i f (nmessLengt h==0)
cout << "nothing, this entity is deaf";
cout << endl
}; //vision and hearing

b

void Entity::display(void) {
di spl ay(!| ocati onl nf o)
//dont bother with displaying vision for inaninates
if (pController!=NULL) {
di spl ay(vi si onl nfo);
cout << "controller is " << pSourceDna->ins << "x"
<< pSour ceDna- >nunHi ddens() << "("
<< pSour ceDna- >maxHi ddens << ") x"
<< pSour ceDna- >outs << endl
H
H

void Entity::init(void) {
loc.set(0,0); direction=0
| ooks.set(0,0,0); int i
//construct vision array for the entity
if (nuntyes! =0)
vi si on = new Col our [ nunEyes] ;
//meke it see nothing
if (nuntyes! =0)
for (i=0; i<nunEyes; i++)
vision[i].reset();
//construct hearing array
if (messLength!=0) {
heari ng new doubl e[ nessLengt h] ;
voi ce new doubl e[ nessLengt h] ;
Yo oIl f
//meke it hear nothing
if (messLengt h! =0)
for (i=0; i<nmessLength; i++)
hearing[i]=(doubl e)0
//not using vision for dont bother maintaining |ist
pNext Enti t y==NULL

|
100|



| Co-evolution of cooperative behaviour

Entity::Entity(void) {
/Ino controller for this entity yet
pController = new Network();
/I no source dna yet either
pSour ceDna = NULL;
//reset other val ues
init();
b

voi d Entity::construct FronDNA(VDNA *pDna) {
// make a controller fromthis dna
pControl |l er = new Network(pDna);
/'l remenber where this dna cane from
pSour ceDna=pDna,;
|l ensure other val ues have been reset
init();

b

Entity::~Entity() {
//free up reserved nenory space
del ete pController;
//free vision array
if (nuntyes! =0)
delete [] vision;
/land hearing array
if (messLength!=0) ({
delete [] hearing;
delete [] voice;
H
H

/1 sweep angle function used in a few other places al so’
doubl e Entity::sweepAngl eTo(Position otherLoc) {

//store the rel evant vari abl es
doubl e x1=l oc. x;

doubl e y1=l oc.y;

doubl e x2=ot her Loc. x;

doubl e y2=ot herLoc.y;

//work out angle fromaxis between point 1 and 2
doubl e t Angl e;
//check for div by zero error
if (x2==x1)
if (y2<yl) t Angl e = - (doubl e)pi/2;
el se tAngle = (doubl e)pi/2;
el se
tAngl e = atan((double)(y2-y1)/(x2-x1));
//quadrant 2 & 3
if (x2<x1) t Angl e+=pi ;
// quadrant 4
if (tAngle<0) tAngle+=twoPi;

//work out relative sweep angle

t Angl e-=di recti on;

if (tAngle<0) t Angl e+=t woPi ;
if (tAngle>twoPi) t Angl e- =t woPi ;

return tAngle;
b

void Entity::snapShotVision(Entity *pConpareEntity) { //plter==pFirstEntity[inani mate]
// some needed vari abl es
doubl e hal f FOV = (doubl e)fiel dOf Vi ew 2;
/I RE int num nVi si on[ nunEyes]; //nunber entities in each view
int f Fini shed=fal se; //flag to deci de when fini shed

//clear out numin vision array and cl ear vision
for (int i=0; i<nunEyes; i++) {
/1 RE num nVi si on[i] =0;
vision[i].reset();
H

//conpare with other entities in the entity list
while (!fFinished) {

//dont want to | ook at self

if (pConpareEntity!=this)({

I
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b

//calculate the sweep angle to this entity we are conparing
doubl e angl e=sweepAngl eTo( pConpar eEntity->l oc);

//check if its in the field of view
if (angl e<hal fFOV || angl e>twoPi - hal f FOV) {
/1in view, but which eye?
//scale to -hal f FOV -> hal f FOV
if (angle>pi) angle-=twoPi;
//scale to 0->FOV (hal fFOv-angl e that is)
angl e+=hal f FOV;

//work out which eye its in then
i nt whi chEye=(int)(angl e/ (doubl e) (fi el dO Vi ew nunkEyes))

//calc distance to the conparing entity
doubl e dist = | oc.distTo(pConpareEntity->loc) * ganm

//add that sight to correct eye
vi si on[ whi chEye] . red
+=(doubl e) pConpar eEntity->l ooks.red / dist;
vi si on[ whi chEye] . green
+=(doubl e) pConpar eEnti ty->l ooks. green / dist;
vi si on[ whi chEye] . bl ue
+=( doubl e) pConpar eEnti ty->l ooks. blue / dist;
/I keep record of how nmany in this view
/1 RE num nVi si on[ whi chEye] ++
Y I/if in view
}; //if not |ooking at self

//even newer version for just the one list
if (pConpareEntity->pNextEntity!=NULL)
pConpar eEntity = pConpareEntity->pNextEntity
el se
f Fi ni shed=true
}; //while not finished flag | oop

/1 get ready to append if needed
of streamvisionFile ("vision.txt",ios::app)

if (fTracking)
visionFile << nunEyes << " " << endl

// average out vision values and put result in entity storage
for (i=0; i<nunEyes; i++)
// average out what was seen in each eye
if (numnVision[i]!=0)
vision[i].red /=(double)num nVision[il];
vision[i].green / =(doubl €) num nVision[i];
vision[i].blue /=(doubl e)num nVision[i];

b

/1if tracking then send to file vision.txt
if (fTracking)

visionFile << vision[i].red << "
<< vision[i].green << "
<< vision[i].blue << " " << endl

void Entity::listen(double sounds[]) {

}s

char

/1 copy sounds into hearing
for (int i=0; i<messLength; i++)
hearing[i]=sounds[i];

Entity::nove(eEntityType type, double worl dNoises[]) {

doubl e *inputs = new doubl e[ pSour ceDna- >i ns] ;
doubl e *out puts = new doubl e[ pSour ceDna- >out s]
int i; //general |oop variable

char returnVval

/I need to prepare inputs for controller

int upto=0; //which part of the input we are defining
//set first position to be 1 for bias calcs
inputsfupto++] =1

//add positional information, if entity has a gl oba
/] positioning system (gps set=2)

if (gps!=0) {
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i nput s[ upt o++
i nput s[ upt o++

oc. X
oc.y;

b
//add vision information, if the entity has vision
if (nunkyes!=0) {
/ltransfer to input array
for (i=0; i<nunEyes; i++) {
i nput s[ upt o++] vision[i].red;
i nput s[ upt o++] vision[i].green
i nput s[ upt o++] vision[i].blue
Y, Ilfor
Yo 11if
/1 add noises, if the entity is not deaf and is a follower
if ((type==follower) && (nmessLength!=0)) {
for (i=0; i<nmessLength; i++)
i nput s[ upt o++] =hearing[i];

b

//should have filled up all the slots now
assert (upt o==pSour ceDna- >i ns)

//think about things
pControl |l er->propogat e(i nputs, out puts)

//extract fromoutput the noise it nmade
//but only if this is the |eader
if (type==l eader)
for (i=0; i<messLength; i++)
wor | dNoi ses[i]=outputs[i];

/1if it is the first entity (the |eader) exit now
if (type==l eader) {

delete [] inputs;

delete [] outputs;

return 'x'; //x representing no nove

b

//find which is highest of the outputs
doubl e hi ghest Val ue=out put s[ 0] ;

i nt highest=0

for (i=1; i<decisions; i++)

i f (outputs[i]=>highestValue) {
hi ghest Val ue=out puts[i];
hi ghest =i

Yo I1if

Y, Ilfor

/I meke that actual nove, depends on how nany decisions there are
if (decisions==3) { /11eft, right and strai ght ahead
swi t ch(hi ghest) {
case 0: //turn left
direction += turnAngle
returnval ="'1";
br eak;
case 1: //turn right
direction -= turnAngle
returnval = "r';
br eak;
case 2: //go straight
//not yet inplenented
exit(666)
returnval ="'s'
br eak;

}

el se {//should be four then

assert (deci si ons==4);

swi tch (highest) {

case 0: //north
| oc. y-=stepSi ze
returnval = 'n';
br eak;

case 1: //south
| oc. y+=st epSi ze
returnval ="'s'
br eak;

case 2: //east

|
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| oc. x+=st epSi ze;
returnval = 'e';
br eak;

case 3: //west
| oc. x- =st epSi ze;
returnval = 'w;
br eak;

}; //lend of switch */

}; Ilelse

//free inputs

delete [] inputs;

delete [] outputs;

return returnval;

/1 ps. doing checking for world wap by world object

H

void Entity::relocate(Position newLoc, double newbDirection) {
| oc=newLoc;
di recti on=newDi rection;

H

voi d Entity::changeCol our (Col our newCol our) {
| ooks=newCol our;
H

void Entity::resetFitness(void) {
pSour ceDna->fi tness[raw] =(fl oat) 0;
b
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Colour header and class definitions

/* col our structure for vision things
Mat t hew Kel cey
Honours Research Code

*/

#i f ndef COLOUR_H
#defi ne COLOUR_H

class Col our {
friend ostream &oper at or <<(ostream &out put, const Col our &c) {
cout << "(" << c.red << "," << c.green << "," << c.blue << ")";
return output;

publi c:
Col our () {red=green=bl ue=(doubl e)0; }
Col our (doubl e r, double g, double b) {red=r;green=g; bl ue=b;}
voi d set(double r, double g, double b) {red=r;green=g; bl ue=b;}
voi d reset (void) {red=green=bl ue=0;}
doubl e red, green, bl ue

b

#endi f
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Neural Network header file

/* NEURAL2. H
3-level neural network object class
inputs and outputs in range -1 to 1
no monentum i npl enentation or flat spot weight correction

by Matthew Kel cey
Honour s Research Code
*/

#i f ndef NEURAL2_H
#defi ne NEURAL2_H

#i ncl ude <stdlib. h> //for rand() function used in creation
#i ncl ude "virtudna. h"

struct |istNode {
doubl e *wei ghts; //array to be dynamically created
i st Node *next;

b

class Network {

publi c:
[/ def aul t
Net wor k(voi d) ;
/I nunmber nodes in layers (input,output), and dna;
Net wor k( vDNA*) ;
//destuctor for removing dynamically created arrays
~Net wor k() ;

/] progogate inputs through network and sets outputs

voi d propogat e(doubl e[], doubl e[]);

/| propogate and deternine nmagni tude of error (tests & true val ues)

doubl e errorMagni tude(doubl e[], double[]);

//train network with input array and true values array and training rate
voi d train(doubl e[], double[], double);

/I make fromthe dna

voi d construct Fr omrDNA( vDNA*) ;

/linject network info back into the dna
voi d i nject ToDna(void);

//raw fitness accessing
voi d cl ear RawFi t ness(voi d);
voi d addToRaw( doubl e) ;

//for debuggi ng
voi d di spl ay(void);

//this should be private but | trust my own access to it
i nt hiddenNodes; //nunber of

private:
// keep pointer to parent dna for changing after training
VvDNA *par ent Dna;
/I need to store which part of the chronpsone each node cane from
//for reinjecting trained values back into the actual dna
int *positions;

[11/inmplement weight values in terns of linked |ist of arrays since
/11/it gave optimal performance under testing.

//list of arrays containing weights in hidden |ayer

|i st Node *hi ddenWei ghts;

//list of arrays containing weights in output |ayer

i st Node *out put Wi ghts;

//hidden | ayer node values (to be created dynami cally)

doubl e *hi ddenVal ues;

#endi f
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Neural Network class definition

/* NEURAL2. CPP v3.0
neural class method definitions
by Matthew Kel cey
Honour s Research Code.

*/

#i ncl ude "neural 2. h"
#include <math.h> //for exp and pow
#i nclude <iostreamh> // for debuggi ng

voi d Network: : addToRaw( doubl e val ue) {
par ent Dna- >fi t ness[raw] +=val ue;
b

voi d Network::cl ear RawFi t ness(void) {
par ent Dna- >fi t ness[ r aw] =0;
b

//dot product function for fast double dp's
//optimsed for pipelining on PentPro
doubl e dotProd(int |len, double *a, double *b) {
int k,m
doubl e sune(doubl e) 0;
k=l en/ 4;
mel en%d;
while (k--) {
sum += *a * *b;
sum += *(a+l) * *(b+1);
sum += *(a+2) * *(b+2);
sum += *(a+3) * *(b+3);

a += 4;
b += 4;
H
while (m-)

sum += *a++ * *p++;
return sum

b

//constructors

Net wor k: : Net wor k(voi d) {
/Inothing to do yet, useful for allocating
|/ space before actual dna is known

b

Net wor k: : Net wor k(vDNA *dna) {
//make it fromthe dna
construct FronDNA(dna) ;

b

voi d Network::construct FronDNA(VDNA *dna) {
int i; //loop variable

//store dna pointer for changing when training
par ent Dna=dna;

//define the nunbers of nodes in each |ayer

hi ddenNodes = dna- >nuntHi ddens();

//define lists for weights for network from dna

//and construct them now

hi ddenWei ghts = new | i st Node;

out put Wi ghts = new | i st Node;

/1and array for hol ding which genes nodes are drawn from
posi tions = new int[hi ddenNodes];

//make list structure for hidden weights |ist

li st Node *iter;

i t er=hi ddenWei ghts;

for (i=0; i<hiddenNodes-1; i++) {
i ter->wei ghts = new doubl e[ par ent Dna- >i ns] ;
iter->next = new |i st Node;
iter=iter->next;
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i ter->wei ghts = new doubl e[ par ent Dna- >i ns] ;
iter->next = 0;
//and al so make list for output weights arrays
i t er =out put Wi ght's;
for (i=0; i<parentDna->outs-1; i++)
i ter->wei ghts = new doubl e[ hi ddenNodes] ;
iter->next = new |i st Node;
iter=iter->next;
}s
i ter->wei ghts = new doubl e[ hi ddenNodes] ;
iter->next = 0;

/lextract data fromstrand and put it in these arrays
//and also into bias values array, and store info on positions
int upto=-1; //how far along dna strand we are
listNode *iterH = hi ddenWei ghts;
|i st Node *iterO = out put Wi ghts;
int whichNode = 0; //which node we are addi ng now.
//scan al ong strand and define weights for active nodes in hidden |ayer
whi |l e (++upto < parentDna->l ength) {
/lis there a new array to define?
if (dna->piece[upto] > 0) {
//store where it cane from
posi ti ons[ whi chNode] = upto;
//get values for hidden |ayer
for (i=0; i<parentDna->ins; i++) //can put upto++ in here?
iterH >wei ghts[i] = dna->pi ece[ ++upto];
iterH = iterH >next;

/1 get values for output |ayer

iterO = out put Wi ght s;

while (iterO >next!=0) {
i ter O >wei ght s[ whi chNode] = dna->pi ece[ ++upt o] ;
iterO = iterO >next;

}s

i ter->wei ght s[ whi chNode] = dna->pi ece[ ++upt o] ;

//up to adding potential next node

whi chNode++;

el se //skip along strand to next node definition
upt o += parent Dna- >genelLengt h- 1;

}s

//create dynamic array for hol ding val ues propogated through network
hi ddenVal ues = new doubl e[ hi ddenNodes] ;

}s

//to delete a list, used by deconstructor
void del eteList(listNode *iter) {
while (iter->next!=0) {
delete [] iter->weights;
iter=iter->next;
s
delete [] iter->weights;
}; //del eteli st

//destroy the network by freeing nenory used by the arrays
Net wor k: : ~Net wor k() {

//free up nenory

del et eLi st (hi ddenWei ghts) ;

del et eLi st (out put Wi ghts) ;

delete [] hiddenVal ues;

delete [] positions;

}s

/| propogate values fromx array through network to y array
voi d Network: : propogat e(doubl e i nputs[], double output[]) {
int i; //for |oops

/leval uate val ues for hidden nodes (with signoid function)

listNode *iter = hiddenWi ghts;

for (i=0; i<hiddenNodes; i++) {
hi ddenVal ues[i ] dot Prod( parent Dna->ins, inputs, iter->weights);
hi ddenVal ues[i ] (doubl e) (1/ (1+exp(-hi ddenVal ues[i])));
iter = iter->next;
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// eval uate val ues for output nodes
iter = output Wi ghts;
for (i=0; i<parentDna->outs; i++)
output[i] = dotProd(hiddenNodes, hiddenVal ues, iter->weights);
iter = iter->next;
}s
}s

/| propogate and determ ne nmagnitude of error

doubl e Network: :errorMagni tude(doubl e input[], double trueValue[]) {
//for conparing against true val ues
doubl e *out put = new doubl e[ par ent Dna- >out s] ;
doubl e errorMagni tude = (doubl e)0;

//get outputs first for error conparison;
propogat e(i nput, out put);

//cal cul ate error magnitude as the nmean square error
for (int j=0; j<parentDna->outs; j++)

error Magni tude += (doubl e)powtrueVal ue[j]-output[j], 2);
error Magni tude /= parent Dna- >out s;

//free nenory
delete [] output;

return error Magni t ude;

b

//train network byb nodifying weights given
/linput array inputs and true val ues array
voi d Network::train(double inputs[], double trueValues[],
doubl e traini ngRate) {
int i,j,k; //for array handling
/loutputs for calculating error nmagnitudes
doubl e *out put s=new doubl e[ par ent Dna- >out s] ;
listNode *iterO *iterH //iterator for output nodes and hi dden nodes

//first propogate values through the network to obtain outputs
propogat e(i nput's, out puts);

// adj ust hi dden wei ghts
iterH = hi ddenWei ghts;
for (j=0; j<hiddenNodes; j++) {
//do sunation
doubl e sune(doubl e) 0;
iterO = out put Wi ghts;
for (k=0; k<parentDna->outs; k++) {
sum += (out puts[k]-trueVal ues[k])*iterO >wei ghts[j];
iterCeiterO >next;

fbr (i =0; i<parentDna->ins; i++)
iterH >wei ghts[i]-=traini ngRat e*hi ddenVal ues[j]*
(1-
hi ddenVal ues[j])*i nputs[i]*sum
iterH=iterH >next;
b

/] adj ust out put wei ghts
iterO = out put Wi ght s;
for (k=0; k<parentDna->outs; k++) {
for (j=0; j<hiddenNodes; j++)
i ter O->wei ghts[j]-=traini ngRat e*(out put s[ k] -trueVal ues[k])

*hi ddenVal ues[j];
iterO=iter O >next;
b

//free nenory
delete [] outputs;

b

voi d Network::injectToDna(void) {
listNode *iterH = hi ddenWei ghts;
i st Node *iterO = out put Wi ghts;

/1 go through each of hidden nodes writing back to dna
for (int whichNode=0; whi chNode<hi ddenNodes; whi chNode++) {

|
109|



| Co-evolution of cooperative behaviour

//where to start injecting
int upto=positions[whichNode] +1; //add one since not changing active

term
/1inject weights for hidden | ayer (incom ng weights)
for (int j=0; j<parentDna->ins; j++)
par ent Dna- >pi ece[ upto++] = iterH >wei ghts[j];
iterH = iterH >next;
/1inject weights for output |ayer (outgoing weights)
iterO = out put Wi ght s;
while (iterO >next!=0) {
par ent Dna- >pi ece[ upt o++] = iter O >wei ght s[ whi chNode] ;
iterO = iterO >next;
Y} /lwhile
par ent Dna- >pi ece[ upt o++] = iter O >wei ght s[ whi chNode] ;
Y /lfor i
b

/11 debuggi ng routines

//for displaying weights arrays
voi d di spl ayArray(double *array, int |length) {
for (int i=0; i<length; i++)
cout << array[i] << " ";
cout << endl;

b

voi d Network: :display(void) {
cout << "network is " << parentDna->ins << ",
<< hi ddenNodes << ", " << parentDna->outs << endl;
/1 di splay hidden node weights
|I'i st Node *iter=hiddenWeights;
cout << "H DDEN WEI GHTS" << endl;
while (iter->next!=0) {
//print out array
di spl ayArray(iter->weights, parentDna->i ns);
iter = iter->next;
b
di spl ayArray(iter->weights, parentDna->i ns);

//di splay output node weights

i t er =out put Wi ght's;

cout << "OUTPUT WEI GHTS" << endl;

while (iter->next!=0) {
//print out array
di spl ayArray(iter->weights, hi ddenNodes) ;
iter = iter->next;

b

di spl ayArray(iter->weights, hiddenNodes) ;

int q; cin >> q;
}; //displayWeights
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